Advanced Search
Volume 31 Issue 3
Dec.  2010
Turn off MathJax
Article Contents
Bu Yan-long, Pan Liang, Shen Lin-cheng. A Fast Algorithm for Terrain Simulation Using Wavelet Based on FBM Fractal Features[J]. Journal of Electronics & Information Technology, 2009, 31(3): 537-541. doi: 10.3724/SP.J.1146.2007.01702
Citation: Bu Yan-long, Pan Liang, Shen Lin-cheng. A Fast Algorithm for Terrain Simulation Using Wavelet Based on FBM Fractal Features[J]. Journal of Electronics & Information Technology, 2009, 31(3): 537-541. doi: 10.3724/SP.J.1146.2007.01702

A Fast Algorithm for Terrain Simulation Using Wavelet Based on FBM Fractal Features

doi: 10.3724/SP.J.1146.2007.01702
  • Received Date: 2007-10-29
  • Rev Recd Date: 2008-04-25
  • Publish Date: 2009-03-19
  • In this paper Haar wavelet is used to construct the simulated natural terrain based on the FBM model and fractal features. Relations between fractal coefficients of truly terrains and wavelet decomposition coefficients of which are anlysised firstly, which help to set up the Haar wavelet-based terrain construction model. Then the fractal features are statisticed through coefficients in different wavelet decomposition levels of truly natural terrain. And subsequently, the simulated terrain is constructed reling on the fractal features, connected with the terrain construction model established. The algorithm has less computational complexity with low cross-entropy, and simulation experiments show the effective of the algorithm.
  • loading
  • 毛峡, 陈斌, 朱刚, 等. 基于小波的2-D 分形布朗运动分析与合成[J]. 电子学报, 2003, 31(6): 825-828.Mao Xia, Chen Bing, and Zhu Gang, et al.. Analysis andsynthesis of two dimensional fractional Brownian motionbased on wavelet [J]. Acta Electronica Sinica, 2003, 31(6):825-828.[2]佘龙华, 沈林成, 常文森. 基于FBM 的分形地形模拟原理研究[J]. 宇航学报, 1999, 20(3): 21-24.She Long-hua, Shen Lin-cheng, and Chang Wen-sen.FBM-based fractal simulation of terrain [J]. Journal ofAstronautics, 1999, 20(3): 21-24.[3]Yokokohji Y.nullChaen S, and Yoshikawa T. Evaluation oftraversability of wheeled mobile robots on uneven terrains byfractal terrain model [J].. Proceedings of the IEEEInternational Conference on Robotics Automation.2004,:-[4]张朋, 黄金, 郭陈江, 等. DEM 数据在SAR图像模拟中的应用[J]. 弹箭与制导学报, 2007, 27(2): 347-350.Zhang Peng, Huang Jin, and Guo Chen-jiang, et al.. Thedisposing method of DEM for the simulation imaging ofSAR[J]. Journal of Projectiles, Rockets, Missiles andGuidance, 2007, 27(2): 347-350.[5]Mandelbrot B B and Van Ness H W. Fractional Brownianmotions, fractional noises and applications [J].SIAM Rev.1968, 10(4):422-437[6]陶闯, 林宗坚, 卢健. 分形地形模拟[J]. 计算机辅助设计与图形学学报, 1996, 8(3): 178-186.Tao Chuang, Lin Zong-jian, and Lu Jian. Fractal simulationof terrain surfaces [J]. Joural of CAD and Computer Graphics,1996, 8(3): 178-186.[7]彭仪普, 刘文熙. 分形地形模拟研究[J]. 长沙铁道学院学报,2001, 19(4): 95-98.Peng Yi-pu and Liu Wen-xi. Fractal Brownian motion andstudy on terrain simulation [J]. Journal of ChangshaRailwayuniversity, 2001, 19(4): 95-98.[8]李长英, 蔡兴泉. 基于中点移位和过程纹理的真实感地形生成 [J]. 山东科技大学学报, 2006, 25(1): 36-39.Li Chang-ying and Cai Xing-quan. Photorealistic Terraingeneration based on midpoint displacement and proceduraltexture[J]. Journal of Shandong University of Science andTechnology (Natural Science), 2006, 25(1): 36-39.[9]秦忠宝, 房亚东, 赵峰, 等. 用FBM 法生成山脉地形的真实感图形的方法[J]. 计算机工程与应用, 2004, 32: 33-36.Qin Zhong-bao, Fang Ya-dong, and Zhao Feng, et al..Building graphics of the three-dimension fractal terrains byusing fBm methods [J]. Computer Engineering andApplication, 2004, 32: 33-36.[10]Unser M and Blu T. Self-Similarity: Part Isplines andoperators [J].IEEE Trans. on Signal Processing.2007, 55(4):1352-1363[11]Blu T and Unser M. Self-similarity: part IIoptimalestimation of fractal processes [J].IEEE Trans. on SignalProcessing.2007, 55(4):1364-1378[12]Tirosh S, Van de Ville D, and Unser M. Polyharmonicsmoothing splines and the multi-dimensional Wiener filteringof fractal-like signals [J].IEEE Trans. on Image Processing.2006, 15(9):2616-2630[13]陆伟宏, 卢鹏飞. 基于小波分析的分形参数估计新方法[J].电子与信息学报.2005, 27(10):1527-1530浏览[14]Tewfik A H and Kim M. Correlation structure of the discretewavelet coefficients of fractional Brownian motion [J].IEEETrans. on Information Theory.1992, 38(2):904-909[15]胡英, 杨杰, 周越. 基于多尺度Wiener 滤波器的分形噪声滤波[J]. 电子学报, 2003, 31(4): 560-563.Hu Ying, Yang Jie, and Zhou Yue. Multiscale Wiener filter forthe estimation of signal embedded in 1/f noise [J]. ActaElectronica Sinica, 2003, 31(4): 560-563.[16]李旭涛, 曹汉强, 赵鸿燕. 分形布朗运动模型及其在地形分析中的应用[J]. 华中科技科技大学学报(自然科学版), 2003,31(5): 50-52.Li Xu-tao, Cao Han-qiang, and Zhao Hong-yan. The analysisof the model of fractal Brownian motion and its applicationsto terrain. Journal of Huangzhong University of Science andTechnology (Nature Science Edition), 2003, 31(5): 50-52.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3380) PDF downloads(938) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return