De la Escalera A and Salichs M. Road traffic sign detectionand classification[J].IEEE Trans. on Industrial Electronics.1997, 44(6):848-859[2]Gavrila D. Multi-feature hierarchical template matchingusing distance transforms. IEEE 14th InternationalConference on Pattern Recognition, Brisbane, Australia,1998: 439-444.[3]Miura J, Kanda T, and Shirai Y. An active vision system forreal-time traffic sign recognition. Proceedings of IEEEIntelligent Transportation Systems, Dearborn, MI, USA,2000: 52-57.[4]Fleyeh H. Shadow and highlight invariant color segmentationalgorithm for traffic signs. IEEE Conference on Cyberneticsand Intelligent Systems, Bangkok, Thailand, 2006: 1-7.[5]Douville P. Real-time classification of traffic signs[J].Real-TimeImaging.2000, 6(3):185-193[6]Nguwi Yok-Yen and Z Kouzani Abbas. Detection andclassification of road signs in natural environments[J].NeuralComputing Applications.2007, DOI:10-[7]Gavrila D. Traffic Sign Recognition Revisited. Proc. of the21st DAGM Symposium, Bonn, Germany, 1999: 86-93.[8]Cyganek B. Circular road signs recognition with affinemoment invariants and the probabilistic neural classifier.Lecture Notes in Computer Science 4432, Springer, Berlin,2007: 508-516.[9]Suk T and Flusser J. Combined blur and affine momentinvariants and their use in pattern recognition. PatternRecognition, 2003, 36(12): 2895-2907.[10]Hu M K. Visual pattern by moment invariants. IEEE IRETrans. on Information Theory, 1962, 8(1): 179-187.[11]Reiss T H. The revised fundamental theorem of momentinvariants[J].IEEE Trans. on Pattern Analysis and MachineIntelligence.1991, 13(8):830-834[12]Flusser J and Suk T. Pattern recognition by affine momentinvariants[J].Pattern Recognition.1993, 26(1):167-174[13]Specht D F. Probabilistic neural networks for classification,mapping or associative memory. IEEE InternationalConference on Neural Networks, Piscataway, New Jersey,USA, 1988: 525-532.[14]Masters T. Practical Neural Network Recipes in C++. SanDiego: Academic Press Inc, 1993: 201-222.[15]Likas A, Vlassis N, and Verbeek J J. The global K-meansclustering algorithm[J].Pattern Recognition.2003, 36(2):451-461[16]Hansen P, Ngai E, and Cheung B K, et al.. Analysis of globalK-means, an incremental heuristic for minimum sum-ofsquaresclustering[J].Journal of Classification.2005, 22(2):287-310
|