Advanced Search
Volume 30 Issue 7
Jan.  2011
Turn off MathJax
Article Contents
Li Lun-bo, Ma Guang-fu . Identification of Degraded Traffic Sign Symbols Using PNN[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1703-1707. doi: 10.3724/SP.J.1146.2007.01638
Citation: Li Lun-bo, Ma Guang-fu . Identification of Degraded Traffic Sign Symbols Using PNN[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1703-1707. doi: 10.3724/SP.J.1146.2007.01638

Identification of Degraded Traffic Sign Symbols Using PNN

doi: 10.3724/SP.J.1146.2007.01638
  • Received Date: 2007-10-16
  • Rev Recd Date: 2008-01-30
  • Publish Date: 2008-07-19
  • A novel feature extraction algorithm is presented for the recognition of traffic sign symbols undergoing degradations in this paper. In order to cope with the degradations, the Combined Blur-Affine Invariants (CBAIs) are adopted to extract the features of traffic sign symbols without any restorations which usually need a great amount of computations. A new magnitude normalization method is proposed for the great differences of magnitude of combined blur-affine invariants. Under the deep discussion of PNN and K-means algorithm, a probabilistic neural network classifier is designed using global K-means algorithm and applied to the classification of degraded traffic signs. The simulation results indicate that CBAIs are efficient for the feature extraction of degraded images, and the designed network is not only parsimonious but also has better generalization performance.
  • loading
  • De la Escalera A and Salichs M. Road traffic sign detectionand classification[J].IEEE Trans. on Industrial Electronics.1997, 44(6):848-859[2]Gavrila D. Multi-feature hierarchical template matchingusing distance transforms. IEEE 14th InternationalConference on Pattern Recognition, Brisbane, Australia,1998: 439-444.[3]Miura J, Kanda T, and Shirai Y. An active vision system forreal-time traffic sign recognition. Proceedings of IEEEIntelligent Transportation Systems, Dearborn, MI, USA,2000: 52-57.[4]Fleyeh H. Shadow and highlight invariant color segmentationalgorithm for traffic signs. IEEE Conference on Cyberneticsand Intelligent Systems, Bangkok, Thailand, 2006: 1-7.[5]Douville P. Real-time classification of traffic signs[J].Real-TimeImaging.2000, 6(3):185-193[6]Nguwi Yok-Yen and Z Kouzani Abbas. Detection andclassification of road signs in natural environments[J].NeuralComputing Applications.2007, DOI:10-[7]Gavrila D. Traffic Sign Recognition Revisited. Proc. of the21st DAGM Symposium, Bonn, Germany, 1999: 86-93.[8]Cyganek B. Circular road signs recognition with affinemoment invariants and the probabilistic neural classifier.Lecture Notes in Computer Science 4432, Springer, Berlin,2007: 508-516.[9]Suk T and Flusser J. Combined blur and affine momentinvariants and their use in pattern recognition. PatternRecognition, 2003, 36(12): 2895-2907.[10]Hu M K. Visual pattern by moment invariants. IEEE IRETrans. on Information Theory, 1962, 8(1): 179-187.[11]Reiss T H. The revised fundamental theorem of momentinvariants[J].IEEE Trans. on Pattern Analysis and MachineIntelligence.1991, 13(8):830-834[12]Flusser J and Suk T. Pattern recognition by affine momentinvariants[J].Pattern Recognition.1993, 26(1):167-174[13]Specht D F. Probabilistic neural networks for classification,mapping or associative memory. IEEE InternationalConference on Neural Networks, Piscataway, New Jersey,USA, 1988: 525-532.[14]Masters T. Practical Neural Network Recipes in C++. SanDiego: Academic Press Inc, 1993: 201-222.[15]Likas A, Vlassis N, and Verbeek J J. The global K-meansclustering algorithm[J].Pattern Recognition.2003, 36(2):451-461[16]Hansen P, Ngai E, and Cheung B K, et al.. Analysis of globalK-means, an incremental heuristic for minimum sum-ofsquaresclustering[J].Journal of Classification.2005, 22(2):287-310
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4054) PDF downloads(746) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return