Han Min, Liu Yun-xia. Local Projection Noise Reduction Based on Nonlinear Constraints[J]. Journal of Electronics & Information Technology, 2009, 31(2): 400-404. doi: 10.3724/SP.J.1146.2007.01330
Citation:
Han Min, Liu Yun-xia. Local Projection Noise Reduction Based on Nonlinear Constraints[J]. Journal of Electronics & Information Technology, 2009, 31(2): 400-404. doi: 10.3724/SP.J.1146.2007.01330
Han Min, Liu Yun-xia. Local Projection Noise Reduction Based on Nonlinear Constraints[J]. Journal of Electronics & Information Technology, 2009, 31(2): 400-404. doi: 10.3724/SP.J.1146.2007.01330
Citation:
Han Min, Liu Yun-xia. Local Projection Noise Reduction Based on Nonlinear Constraints[J]. Journal of Electronics & Information Technology, 2009, 31(2): 400-404. doi: 10.3724/SP.J.1146.2007.01330
An improved method is proposed for noise reduction of chaotic time series based on the reconstruction of phase space theory. Recursive map is firstly used for the chaos characteristics analysis of the time series observed, then the conditions of nonlinear constraints are introduced to the local projection method, and Singular Spectrum Analysis(SSA) is combined in the local neighborhood, which uses the main components representing the attractors to reconstruct the time series. The improved method raised in this paper overcomes the problems that the traditional local projection can not fully character the nonlinear relationship of system, reduces the deviation of the reconstruction, and improves the signal-to-noise ratio of the system. The chaotic time series generated by Lorenz model and sunspot time series are respectively applied to simulation analysis. The numerical experiment results confirm the effect of the method raised in this paper for noise reduction in the time series observed.
杨杰, 姜明启. 混沌研究方法在雷达海杂波分析中的应用[J].电子与信息学报.2001, 23(6):552-558浏览[2]邹恩, 李祥飞, 张泰山. 混沌与混沌应用. 计算机工程与应用,2002, 11(18): 53-56.Zou E, Li X F, and Zhang T S. Chaos and ChaoticApplication. Computer Engineering and Application, 2002,11(18): 53-56.[3]Alexander L F and Robin J E. Control of chaos: Methods andapplications in engineering[J].Annual Reviews in Control.2005,29(1):33-56[4]Kostelich E J and Thomas S. Noise reduction in chaotic timeseries data: A survey of common methods[J].Physical Review E.1993, 48(3):1752-1763[5]Farmer J D and Sidorowich J J. Optimal shadowing and noisereduction[J].Physica D.1991, 47(3):373-392[6]Urbanowicz K and Holyst J A. Noise reduction for flows usingnonlinear constraints. Acta Physica Polonica B, 2005, 36(9):2805-2820.[7]Murguia J S and Campos C E. Wavelet analysis of chaotictime series. Revista Mexicana De Fisica, 2006, 52(2):155-162.[8]潘泉, 孟晋丽, 张磊等. 小波滤波方法及应用[J].电子与信息学报.2007, 29(1):236-242浏览[9]Grassberger P, Hegger R, and Kantz H. On noise reductionmethods for chaotic data[J].Chaos.1993, 3(2):127-141[10]Hegger R, Kantz H, and Matassini L. Noise reduction forhuman speech signals by local projections in embeddingspaces[J].Circuits and Systems-I: Fundamental Theory andApplications.2001, 48(12):1454-1461[11]Norbert M and Jrgen K. Line structures in recurrence plots[J].Physics Letters A.2005, 336(4-5):349-357[12]George L and Xenophon M. The sunspot as an autonomousdynamical system: A model for the growth and decay phasesof sunspots[J].Physica A: Statistical Mechanics and ItsApplications.2007, 379(2):436-458