Advanced Search
Volume 31 Issue 2
Dec.  2010
Turn off MathJax
Article Contents
Nie Wei-ke, Feng Da-zheng, Zhang Bin. Joint Diagonalization Algorithm for Harmonic Retrieval[J]. Journal of Electronics & Information Technology, 2009, 31(2): 331-334. doi: 10.3724/SP.J.1146.2007.01286
Citation: Nie Wei-ke, Feng Da-zheng, Zhang Bin. Joint Diagonalization Algorithm for Harmonic Retrieval[J]. Journal of Electronics & Information Technology, 2009, 31(2): 331-334. doi: 10.3724/SP.J.1146.2007.01286

Joint Diagonalization Algorithm for Harmonic Retrieval

doi: 10.3724/SP.J.1146.2007.01286
  • Received Date: 2007-08-06
  • Rev Recd Date: 2008-02-04
  • Publish Date: 2009-02-19
  • In this paper, a set of eigen matrices are introduced which possess diagonal structure. A new iterative algorithm is proposed to implement the joint diagonalization of the eigen matrices, the harmonic retrieval can be accomplished by the diagonalization procedure. The new algorithm improves the cost function of the well-know ACDC algorithm, changes it from fourth function to a quadratic function. Each iteration step poseses a typical least square problem with a unique closed solution, hence there is no error propagation as the ACDC algorithm. Simulation results demonstrate it is a new reliable and faster algorithm which is particularly accurate in extremely low SNR.
  • loading
  • Roy R, Paulraj A, and Kailath T. ESPRIT-A subspacerotation approach to estimation of parameters of cisoids innoise[J].IEEE Trans. on Acoust., Speech, Signal Processing.1986, 34(10):1340-1342[2]Roy R and Kailath T. ESPRIT estimation of signalparameters via rotational invariance techniques[J].IEEE Trans.on Acoust, Speech, Signal Processing.1989, 37(7):984-995[3]Yeredor A. Non-orthogonal joint diagonalization in theleast-squares sense with application in blind sourceseparation[J].IEEE Trans. on Signal Processing.2002, 50(7):1545-1553[4]Vollgraf R and Obermayer K. Quadratic optimization forsimultaneous matrix diagonalization[J].IEEE Trans. on SignalProcessing.2006, 54(9):3270-3278[5]Vanpoucke F, Moonen M, and Berthoumieu Y. An efficientsubspace algorithm for 2-D harmonic retrieval. Proc. IEEEICASSP, Adelaide, Australia, 1994: 461-464.[6]Zhou Yi, Feng Dazheng, and Liu Jianqiang. A novelalgorithm for two-dimensional frequency estimation [J].Signal Processing.2007, 87(1):1-12[7]Feng Dazheng, Zhang Xianda, and Bao Zheng. A neuralnetwork learning for adaptively extracting cross-correlationfeatures between two high-dimension data streams[J].IEEETrans. on Neural Networks.2004, 15(6):1541-1553[8]Ziehe A, Laskov P, and Nolte G. A fast algorithm for jointdiagnolization with non-orthogonal transformation and itsapplication to blind signal separation. J Mach. Learn. Res.,2004, 5(7): 777-800.[9]Golub G H and Loan C F V. Matrix Computation. Baltimore,MD: Johns Hopkins Univ. Press, 1989, Chapter 10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3479) PDF downloads(624) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return