Advanced Search
Volume 31 Issue 1
Dec.  2010
Turn off MathJax
Article Contents
Zheng Jian-ping, Bai Bao-ming, Wang Xin-mei. Low-Complexity Particle Filtering Detection for MIMO Systems[J]. Journal of Electronics & Information Technology, 2009, 31(1): 87-90. doi: 10.3724/SP.J.1146.2007.01070
Citation: Zheng Jian-ping, Bai Bao-ming, Wang Xin-mei. Low-Complexity Particle Filtering Detection for MIMO Systems[J]. Journal of Electronics & Information Technology, 2009, 31(1): 87-90. doi: 10.3724/SP.J.1146.2007.01070

Low-Complexity Particle Filtering Detection for MIMO Systems

doi: 10.3724/SP.J.1146.2007.01070
  • Received Date: 2007-06-29
  • Rev Recd Date: 2007-10-29
  • Publish Date: 2009-01-19
  • Two low-complexity Particle Filtering (PF) detections for Multi-Input Multi-Output (MIMO) systems, namely sphere-constrained PF and multi-level mapping PF, are proposed by reducing the sample size and the search space of signal detection, respectively. In the proposed sphere-constrained PF, a sphere bound is first obtained based on zero-forcing principle, then the sphere bound is utilized to decrease the number of particles resulted by the importance sampling of each stage in the PF procedure. While the proposed multi-level mapping PF partitions the high-order Quadrature Amplitude Modulation (QAM) constellation of size 4L into L 4-QAM constellations with the aid of multi-level mapping, which reduces the search space of signal detection. Simulation results show that the first method can reduce the computational complexity of PF detection effectively without performance degradation especially when the number of transmit antennas is large; and the second method can significantly reduce the computational complexity at the cost of little performance degradation.
  • loading
  • Doucet A, de Freitas J F G, and Gordon N. Sequential MonteCarlo Methods in Practice. New York, Springer-Verlag, 2001.[2]Doucet A, Godsill S, and Andrieu C. On sequential MonteCarlo sampling methods for Bayesian filtering[J].Statist.Comput.2000, 10(3):197-208[3]Djuric P M, Kotecha J H, and Zhang J, et al.. Particlefiltering. IEEE Signal Processing Magazine, 2003, 20(5): 19-38.[4]Doucet A and Wang X. Monte Carlo methods for signalprocessing. IEEE Signal Processing Magazine, 2005, 22(6):152-170.[5]Huang Y, Zhang J, and Djuric P M. Bayesian detection forBLAST[J].IEEE Trans. on Signal Processing.2005, 53(3):1086-1096[6]Dong B, Wang X, and Doucet A. A new class of soft MIMOdemodulation algorithms[J].IEEE Trans. on Signal Processing.2003, 51(11):2752-2763[7]Golub G H and Van L C F. Matrix Computations (3rdedition). Baltimore, MD, USA, Johns Hopkins UniversityPress, 1996, Chapters 2 and 5.[8]Liu J and Chen R. Sequential Monte Carlo methods for dynamicsystems[J].J. Amer. Statist. Assoc.1998, 93(5):1032-1044[9]Chen R and Liu J. Mixture Kalman filter. J. Amer. Statist.Assoc. (B), 2000, 62(3): 493-509.[10]Kitagawa G. Monte Carlo filter and non-Gaussian nonlinearstate space models[J].J. Comput. Graph. Statist.1996, 5(1):1-25[11]Liu J S. Monte Carlo Strategies in Scientific Computing. NewYork, Springer-Verlag, 2001, Chapter 5.[12]Hochwald B M and ten Brink S. Achieving near-capacity on amultiple-antenna channel[J].IEEE Trans. on Commun.2003,51(3):389-399[13]De Jong Y vo L C and Willink T J. Iterative tree searchdetection for MIMO wireless systems[J].IEEE Trans. onCommun.2005, 53(6):930-935
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3328) PDF downloads(840) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return