Advanced Search
Volume 30 Issue 12
Jan.  2011
Turn off MathJax
Article Contents
Zhu Zhi-Liang, Li Shu-Ping, Yu Hai. A Method of Chaotic Generalized Synchronization with the Stability of Error System[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2987-2990. doi: 10.3724/SP.J.1146.2007.00935
Citation: Zhu Zhi-Liang, Li Shu-Ping, Yu Hai. A Method of Chaotic Generalized Synchronization with the Stability of Error System[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2987-2990. doi: 10.3724/SP.J.1146.2007.00935

A Method of Chaotic Generalized Synchronization with the Stability of Error System

doi: 10.3724/SP.J.1146.2007.00935
  • Received Date: 2007-06-11
  • Rev Recd Date: 2007-12-12
  • Publish Date: 2008-12-19
  • When the chaotic systems are divided into linear and nonlinear parts, a new approach is presented to realize generalized synchronization of chaotic systems, by using feedback control and parameter commutation. Based on linear transform, the question of generalized synchronization system can be transformed into the stability question of synchronous error system, and the existence condition of GS has been given. Furthermore, favorable performance of generalized synchronization can be improved according to configuration of GS velocity。Expansive generalization can be acquired, without a limit of stability of linear part of the chaotic system. The Lorenz system is taken for illustration and verification,and the results of the simulation indicated that the method is provided of favorable applicability.
  • loading
  • [1] Pecora M and Carroll L. Synchronization in chaotic systems[J].Phys. Rev. Lett.1990, 64(8):821-823 [2] Elabbasy E M, Agiza H N, and El-Dessoky M M. Controllingand synchronization of Rossler system with uncertainparameters [J]. International Journal of Nonlinear Sciencesand Numerical Simulation, 2005, 5(2): 171-181. [3] 黄丽蒂, 姚婷妤, 赵文艳. 混沌系统的自适应变结构同步及其在保密通信中的应用[J]. 电路与系统学报, 2006, 11(2): 103-106.Huang Li-di, Yao Ting-yu, and Zhao Wen-yan. Adaptivevariable structure synchronization of chaotic systems and itsapplication to secure communications[J]. Journal of Circuitsand Systems, 2006, 11(2): 103-106. [4] 朱灿焰, 郑毓蕃. 一种可逆非线性混沌保密通信系统研究[J].电子与信息学报.2006, 28(4):721-727浏览 [5] 方锦清. 非线性系统中混沌控制方法、同步原理及其应用前景(二)[J]. 物理学进展, 1996, 16(2): 174-176.Fang Jin-qing. Control and synchronization of chaos innonlinear systems and prospects for application( Ⅱ )[J].Progress in Physics, 1996, 16(2): 174-176. [6] 方锦清. 驾驭混沌与发展高新技术[M]. 北京: 原子能出版社,2002: 89-95.Fang Jin-qing. Rein Chaos and Develop the New Technology[M]. Beijing: Atomic energy press, 2002. [7] Pecora M and Carroll L. Driving systems with chaoticsignals[J].Phys. Rev. A.2001, 44(4):2374-2383 [8] Carroll L and Pesora M. Synchronizing chaotic circuits[J].IEEE Trans. on CAS, 2001, 38(4): 453-456. [9] 张平伟, 唐国宁, 罗晓曙. 双向耦合混沌系统广义同步[J]. 物理学学报, 2005, 54(8): 3497-3501.Zhang Ping-wei, Tang Guo-ning, and Luo Xiao-shu.Generalized synchronization of bidirectionally coupled chaossystems [J]. Acta Physica Sinica, 2005, 54(8): 3497-3501. [10] Kapitaniak T. Experimental synchronization of chaos usingcontinuous control[J]. Int J. Bifurc. Chaos, 2004, 4(2):483-488. [11] Yang T and Chua L O. Generalized synchronization of chaosvia linear transformations[J].Int J. Bifurc. Chaos.1999, 9(1):215-219 [12] 高远, 翁甲强, 罗晓曙. 超混沌电路的广义同步[J]. 电子与信息学报, 2002, 6(24): 855-959.Gao Yuan, Weng Jia-jiang, and Luo Xiao-shu. Generalizedsynchronization of hyerchaotic circuit[J]. Journal ofElectronics Information Technology, 2002, 6(24): 855 -959. [13] Lorenz E N. Deterministic Nonperiodic Flow[J].Journal ofAtmosphere Science.1963, 20(1):130-141
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3135) PDF downloads(881) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return