Song Hang, Wang Shi-Xi, Yu Wen-Xian, Su Yi. Wavelet-Based Speckil Filtering Comebining HMT and HMRF for SAR Images[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2822-2826. doi: 10.3724/SP.J.1146.2007.00928
Citation:
Song Hang, Wang Shi-Xi, Yu Wen-Xian, Su Yi. Wavelet-Based Speckil Filtering Comebining HMT and HMRF for SAR Images[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2822-2826. doi: 10.3724/SP.J.1146.2007.00928
Song Hang, Wang Shi-Xi, Yu Wen-Xian, Su Yi. Wavelet-Based Speckil Filtering Comebining HMT and HMRF for SAR Images[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2822-2826. doi: 10.3724/SP.J.1146.2007.00928
Citation:
Song Hang, Wang Shi-Xi, Yu Wen-Xian, Su Yi. Wavelet-Based Speckil Filtering Comebining HMT and HMRF for SAR Images[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2822-2826. doi: 10.3724/SP.J.1146.2007.00928
A novel iterative algorithm to estimate the hidden states of wavelet coefficients of SAR images is proposed by combing the Hidden Markov Tree (HMT) and the Hidden Markov Random Field (HMRF) model. Inter-scale and intra-scale correlation of the coefficients are utilized efficiently in the new approach so the estimation for states is more accurate. With states known the Bayesian estimation is applied to the coefficients to eliminate noises infection. Experiments show that not only the image is despeckled efficiently but also the details are preserved well.
[1] 贾承丽, 匡纲要. SAR图像去斑方法. 中国图象图形学报, 2005,10(2): 135-141. [2] Hua Xie, Pierce L E, and Ulaby F T. SAR speckle reductionusing wavelet denoising and Markov random field modeling[J].IEEE Trans. on Geoscience and Remote Sensing.2002,40(10):2196-2212 [3] Crouse M S, Nowak R D, and Baraniuk R G. Wavelet-basedstatistical signal processing using hidden Markov models[J].IEEE Trans. on Signal Processing.1998, 46(4):886-902 [4] Arsenault H H and April G. Properties of speckle integratedwith a finite aperture and logarithmically transformed. J. Opt.Soc. Am, 1976, 11(22): 1160-1168. [5] Donoho D L. Adapting to unknown smoothness via waveletshrinkage[J].J. Amer. Stat. Assoc.1995, 90(432):1200-1224 [6] Tomasi C. Estimating gussian mixture densities with EMa tuorial. www.cs.duke.edu/courses/spring04/cps196.1/handouts/ EM/tomasiEM. pdf, 2004, 3. [7] Besag J. On the statistical analysis of dirty pictures. J. R.Statist. Soc. B, 1986, 48(3): 259-302.