Advanced Search
Volume 30 Issue 12
Jan.  2011
Turn off MathJax
Article Contents
Yan Yan, Zhang Yu-Jin. Discriminant Projection Embedding with Its Application to Face Recognition[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2902-2905. doi: 10.3724/SP.J.1146.2007.00864
Citation: Yan Yan, Zhang Yu-Jin. Discriminant Projection Embedding with Its Application to Face Recognition[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2902-2905. doi: 10.3724/SP.J.1146.2007.00864

Discriminant Projection Embedding with Its Application to Face Recognition

doi: 10.3724/SP.J.1146.2007.00864
  • Received Date: 2007-06-04
  • Rev Recd Date: 2007-09-13
  • Publish Date: 2008-12-19
  • A new supervised linear dimensionality reduction method called Discriminant Projection Embedding (DPE) is proposed. Compared with widely-used Linear Discriminant Analysis (LDA), DPE can preserve the within-class neighboring geometry and extract between-class relevant structures for classification more efficient. Experimental results on public face databases show the feasibility and efficiency of DPE.
  • loading
  • [1] Yan S C, Xu D, Zhang B, and Zhang H J. Graph embeddingand extensions: A general framework for dimensionalityreduction[J].IEEE Trans. on Pattern Analysis and MachineIntelligence.2007, 29(1):40-51 [2] Moghaddam B. Principal manifolds and probabilisticsubspace for visual recognition[J].IEEE Trans. on PatternAnalysis and Machine Intelligence.2002, 24(6):780-788 [3] Zhao W, Chellappa R, Phillips P J, and Rosenfeld A. Facerecognition: A literature survey[J].ACM Computing Surveys.2003, 35(4):399-459 [4] Zhao W, Chellappa R, and Krishnaswamy A. Discriminantanalysis of principal components for face recognition.Proceedings of IEEE International Conference on AutomaticFace and Gesture Recognition, Nara, Japan, 1998: 336-341. [5] Belhumeur P N, Hepanha J P, and Kriegman D J. Eigenfacesvs Fisherfaces: recognition using class specific linearprojection[J].IEEE Trans. on Pattern Analysis and MachineIntelligence.1997, 19(7):711-720 [6] Bressan M and Vitria J. Nonparametric discriminant analysisand nearest neighbor classification[J].Pattern RecognitionLetters.2003, 24(15):2743-2749 [7] Chen H T, Chang H W, and Liu T L. Local discriminantembedding and its variants. Proceedings of IEEEInternational Conference on Computer Vision and PatternRecognition, San Diego, USA, 2005: 846-853. [8] Chen L, Liao H, Ko M, Lin J, and Yu G. A new LDA-basedface recognition system which can solve the small sample sizeproblem[J].Pattern Recognition.2000, 33(10):1713-1726 [9] Yu H and Yang J. A direct LDA algorithm forhigh-dimensional data with application to face recognition[J].Pattern Recognition.2001, 34(10):2067-2070 [10] Wang X G and Tang X O. A unified framework for facerecognition[J].IEEE Trans. on Pattern Analysis and MachineIntelligence.2004, 26(9):1222-1228 [11] Roweis S and Saul L K. Nonlinear dimensionality reductionby locally linear embedding[J].Science.2000, 290(5500):2323-2326 [12] He X, Cai D, Yan S, and Zhang H J. Neighborhoodpreserving embedding. Proceedings of IEEE InternationalConference on Computer Vision, Beijing, China, 2005:1208-1213. [13] Fukunaga K. Introduction to Statistical Pattern Recognition.New York: Academic Press, 1990: 466-479. [14] You Q, Zhen N, Du S, and Wu Y. Neighborhood discriminantanalysis for face recognition. Pattern Recognition Letters,2007, 40(8): 2283-2291.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3484) PDF downloads(952) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return