Advanced Search
Volume 30 Issue 9
Jan.  2011
Turn off MathJax
Article Contents
Li Xu-Tao, Wang Shou-Yong, Jin Lian-Wen. Radar Clutter Recognition Using Alpha Stable Distribution[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2042-2045. doi: 10.3724/SP.J.1146.2007.00853
Citation: Li Xu-Tao, Wang Shou-Yong, Jin Lian-Wen. Radar Clutter Recognition Using Alpha Stable Distribution[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2042-2045. doi: 10.3724/SP.J.1146.2007.00853

Radar Clutter Recognition Using Alpha Stable Distribution

doi: 10.3724/SP.J.1146.2007.00853
  • Received Date: 2007-06-01
  • Rev Recd Date: 2007-11-06
  • Publish Date: 2008-09-19
  • In this paper, the Positive Alpha Stable (PS)distribution is introduced to identify four traditional kinds of radar clutter, such as Rayleigh, Weibull, Log-normal and K. The tail distributions of various clutters are represented with PS parameterization. Furthermore, a new method for recognizing such radar clutter distributions is proposed, which relies on the estimated model parameters for Alpha stable distribution. Simulation results show that the proposed new method has higher precision and less calculation burden in comparison with traditional KS testing.
  • loading
  • [1] 何友, 关键, 彭应宁等著. 雷达自动检测与恒虚警处理[M].北京: 清华大学出版社, 1999, 第6, 8 章.He You, Guan Jian, and Peng Ying-ning et al.. AutomaticRadar Detection and Constant False Alarm Rate Processing.Tsinghua University press, Beijing, 1999, Chapter 6 andchapter 8. [2] Samorodnitsky G and Taqqu M. Stable Non-GaussianRandom Processes: Stochastic Models with Infinite Variance[M]. Chapman and Hall, NewYork, London, 1994, Chapter 1. [3] Tsakalides P, Trinic F, and Nikias C L. Performanceassessment of CFAR processors in Pearson-distributed clutter[J].IEEE Trans. on Aerospace and Electronic Systems.2000,36(4):1377-1386 [4] Tsakalides P, Raspanti R, and Nikias C L. Angle/Dopplerestimation in heavy-tailed clutter backgrounds [J].IEEETrans. on Aerospace and Electronic Systems.1999, 35(2):419-436 [5] Kuruoglu E E and Zerubia J. Modeling SAR images with ageneralization of the Rayleigh distribution [J].IEEE Trans.on Image Processing.2004, 13(4):527-533 [6] Kapoor R, Banerjee A, Tsihrintzis G A, and Nandhakumar N.UWB radar detection of targets in foliage using alpha-stableclutter models [J].IEEE Trans. on Aerospace and ElectronicSystems.1999, 35(3):819-834 [7] 王首勇, 刘俊凯, 王永良. 机载雷达多杂波分布类型的恒虚警检测方法[J]. 电子学报, 2005, 33(3): 484-487.Wang Shou-yong, Liu Jun-kai, and Wang Yong-liang. CFARdetection for multi-class clutter distribution Based onairborne radar [J]. Acta Electronica Sinica, 2005, 33(3):484-487. [8] 马晓岩, 方学立, 向家彬. 两种相关杂波的识别方法及其实验比较[J]. 电子学报, 2003, 31(6): 851-854.Ma Xiao-yan, Fang Xue-li, and Xiang Jia-bin. Two methodsof correlated clutter recognition and their experimentalcomparison [J]. Acta Electronica Sinica, 2003, 31(6):851-854. [9] Jakubiak A, et al.. Radar clutter classification using kohonenneural network [C]. Proc. of international radar conference,Edinburgh, 1997: 185-188. [10] Billingsley J B, et al.. Statistical analyses of measured radarground clutter data [J].IEEE Trans. on Aerospace andElectronic Systems.1999, 35(2):579-593 [11] DuMouchel W H. On the asymptotic normality of themaximum-likelihood estimate when sampling from a stabledistribution [J].Annals of Statistics.1973, 1(5):948-957 [12] McCulloch J H. Simple consistent estimators of stabledistribution parameters [J].Communications in Statistics.Simulation and Computation.1986, 15(4):1109-1136 [13] Kogon S M and Williams D B. On the characterization ofimpulsive noise with -stable distributions using Fouriertechniques [C]. 1995 Conference Record of the Twenty-NinthAsilomar Conference on, Pacific Grove, California, 1995, 2:787-791.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3423) PDF downloads(955) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return