Advanced Search
Volume 30 Issue 12
Jan.  2011
Turn off MathJax
Article Contents
Wu Qi-Qian, Zhang Xiong-Wei, Zou Xia. Voice Activity Detection Using Parallel Distance of Probability Density[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2886-2889. doi: 10.3724/SP.J.1146.2007.00804
Citation: Wu Qi-Qian, Zhang Xiong-Wei, Zou Xia. Voice Activity Detection Using Parallel Distance of Probability Density[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2886-2889. doi: 10.3724/SP.J.1146.2007.00804

Voice Activity Detection Using Parallel Distance of Probability Density

doi: 10.3724/SP.J.1146.2007.00804
  • Received Date: 2007-05-28
  • Rev Recd Date: 2007-09-24
  • Publish Date: 2008-12-19
  • In this paper, a Voice Activity Detection algorithm is developed, which uses a distance measure parameter parallel connection distance of probability density to improve detection. The algorithm is based on the determination of the speech/noise divergence by means of parallel distance of the Mel-field sub-band log-energies probability density. The proposed VAD is tested on speech signals with various noises under different SNRs. Experimental results show that the proposed VAD outperforms the standard algorithm G.729 VAD.
  • loading
  • [1] 杨行峻, 迟惠生等. 语音信号数字处理. 北京: 电子工业出版社, 1995, 第11 章. [2] Rabiner L and Juang B H. Fundamentals of SpeechRecognition. New Jersey: Prentice-Hall PTR, 1993, Chapter3. [3] Shen J L, Hung J W, and Lee L S. Robust entropy-basedendpoint detection for speech recognition in noisyenvironments [A]. ICSP 1998[C]. Sydney, Australia: 1998:232-235. [4] Benyassine A, Shlomot E, Su H Y, Massaloux D, Lamblin C,and Petit J P. ITU-T G.729 Annex B: A silence compressionscheme for use with G.729 optimized for V.70 digitalsimultaneous voice and data application. IEEE Commun Mag,1997, 35(9): 64-73. [5] Sohn J, Kim N S, and Sung W. A statistical model-basedvoice activity detection. IEEE Signal Processing Letters, 1999,6(1): 1-3. [6] Tanyer S G and Ozer H. Voice activity detection innonstationary noise[J].IEEE Trans. on Speech and AudioProcessing.2000, 8(4):478-482 [7] Gazor S and Zhang W. A soft voice activity detector based ona laplacian-gaussian model[J].IEEE Trans. on Speech andAudio Processing.2003, 11(5):498-505 [8] Ramirez J, Segura J C, and Benitez C, et al.. A newKullback-Leibler VAD for speech recognition in noise[J].IEEESignal Processing Letters.2004, 11(2):266-269 [9] Johnson D H and Sinanovics. Symmetrizing the Kullback-Leibler Distance. Technical report, Rice University, 2001. [10] Kamm T, Hermansky H, and Andreou A G. Learning theMel-scale and optimal VTN mapping, Technical Report,CSLP, Johns Hopkins University, 1997. [11] Ephraim Y and Malah D. Speech enhancement using aminimum mean-square error short-time spectral amplitudeestimator[J].IEEE Trans. on Acoustics, Speech, and SignalProcessing.1984, 32(6):1109-1121 [12] Ephraim Y and Malah D. Speech enhancement using aminimum mean-square error log-spectral amplitudeestimator[J].IEEE Trans. on Acoustics, Speech, and SignalProcessing.1985, 33(2):443-445
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2893) PDF downloads(1367) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return