Min Fu-Hong, Wang Zhi-Quan. Generalized Synchronization for Two Same or Different New Hyper-chaotic Systems[J]. Journal of Electronics & Information Technology, 2008, 30(12): 3031-3034. doi: 10.3724/SP.J.1146.2007.00586
Citation:
Min Fu-Hong, Wang Zhi-Quan. Generalized Synchronization for Two Same or Different New Hyper-chaotic Systems[J]. Journal of Electronics & Information Technology, 2008, 30(12): 3031-3034. doi: 10.3724/SP.J.1146.2007.00586
Min Fu-Hong, Wang Zhi-Quan. Generalized Synchronization for Two Same or Different New Hyper-chaotic Systems[J]. Journal of Electronics & Information Technology, 2008, 30(12): 3031-3034. doi: 10.3724/SP.J.1146.2007.00586
Citation:
Min Fu-Hong, Wang Zhi-Quan. Generalized Synchronization for Two Same or Different New Hyper-chaotic Systems[J]. Journal of Electronics & Information Technology, 2008, 30(12): 3031-3034. doi: 10.3724/SP.J.1146.2007.00586
Based on the linear stability theory, a new simple nonlinear feedback control method is proposed. The technique can be applied to drive the generalized projective synchronization for two new same hyper-chaotic systems or two different hyper-chaotic systems. This property can arbitrarily direct the scaling factor into a desired value. Numerical simulations show the effectiveness of the controller.
[1] Rosenblum M, Pikovsky A, and Kurth J. Phasesynchronization in chaotic oscillators. Phys. Rev. Lett.1996, 76(11): 1804-1810. [2] Taherion S and Lai Y. Experimental observation of lagsynchronization in coupled chaotic systems [J]. Int. J. Bifurc.Chaos, 2000, 10(11): 2587-2594. [3] Chen G and Liu S. On generalized synchronization of spatialchaos[J].Chaos. Solitons and Fractals.2003, 15(2):311-318 [4] Mainieri R and Rehacek J. Projective synchronization inthree-dimensional chaotic systems [J]. Phys. Rev. Lett. 1999,82(15): 3042-3046. [5] Yan J P and Li C P. Generalized projective synchronizationof a unified chaotic system [J].Chaos. Solitons and Fractals.2005, 26(4):1119-1124 [6] Li C P and Yan J P. Generalized projective synchronizationof chaos: The cascade synchronization approach [J].Chaos.Solitons and Fractals.2006, 30(1):140-146 [7] Li G H. Generalized projective synchroni zation of twochaotic systems by using active control [J]. Chaos. Solitonsand Fractals 2006, 30(1): 77-82. [8] 刘扬正, 费树岷. Genesio-Test 和Coullet 混沌系统之间的非线性反馈同步[J]. 物理学报 2005, 54(8): 3486-3490.Liu Y Z and Fei S M. Synchronization in the Genesio-Tesiand Coullet systems with nonlinear feedback controlling[J].Acta Physica Sinica, 2005, 54(8): 3486-3490. [9] Wang J Z, Chen Z Q, and Yuan Z Z. The generation of ahyperchaotic system based on a three-dimensionalautonomous chaotic system [J].Chin. Phys.2006, 15(6):1216-1225 [10] Wang F Q and Liu C H. Hyperchaos ecolved from the Liuchaotic system [J].Chin. Phys.2006, 15(5):0963-0968