Xing Li-Juan, Li Zhuo, Wang Xin-Mei. Encoding and Decoding of CSS-type Quantum Convolutional Codes[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2388-2391. doi: 10.3724/SP.J.1146.2007.00503
Citation:
Xing Li-Juan, Li Zhuo, Wang Xin-Mei. Encoding and Decoding of CSS-type Quantum Convolutional Codes[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2388-2391. doi: 10.3724/SP.J.1146.2007.00503
Xing Li-Juan, Li Zhuo, Wang Xin-Mei. Encoding and Decoding of CSS-type Quantum Convolutional Codes[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2388-2391. doi: 10.3724/SP.J.1146.2007.00503
Citation:
Xing Li-Juan, Li Zhuo, Wang Xin-Mei. Encoding and Decoding of CSS-type Quantum Convolutional Codes[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2388-2391. doi: 10.3724/SP.J.1146.2007.00503
A general structure of CSS-type quantum convolutional codes is presented. The standard form of stabilizers, operators and operators are also given. Encoding and decoding of the codes are discussed with emphasis and corresponding networks are described. Only Hadamard and controlled NOT operations are involved in the whole process of encoding and decoding CSS-type quantum convolutional codes, so simple networks are obtained with low complexity.
[1] Calderbank A R and Shor P W. Good quantumerror-correcting codes exist[J].Phys. Rev. A.1996, 54(2):1098-1105 [2] Nielsen M and Chuang I. Quantum Computation andQuantum Information. Last Modified, Cambridge:Cambridge University Press, 2004: 73-241. de Almeida A C A and Palazzo R. A concatenated [[4.[J].1,3]]quantum convolutional code. Proc. ITW04, San Antonio,USA.2004,:- [3] Gottesman D. Stabilizer codes and quantum error correction.[PHD thesis], California Institute of Technology, 1997. [4] 李承祖. 量子通信和量子计算. 第一版, 长沙: 国防科技大学出版社, 2000: 297-330.Li C Z. Quantum Communication and QuantumComputation. 1st ed, Changsha: National University ofDefense Technology Press, 2000: 297-330. [5] 王新梅, 肖国镇. 纠错码原理与方法. 修订版, 西安: 西安电子科技大学出版社, 2001: 378-415.Wang X M and Xiao G Z. Error-Correcting Codes Principle and Method. 2nd ed, Xian: Xidian University Press,2001: 378-415. [6] Forney G D and Guha S. Simple rate-1/3 convolutional andtail-biting quantum error-correction codes. Proc. ISIT05,Adelaide, Australia, 2005: 1028-1032.