Xi Xu-Gang, Li Zhong-Ning, Luo Zhi-Zeng. SEMG Movement Pattern Recognition of Hand Based on Correlation Analysis and SVM[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2315-2319. doi: 10.3724/SP.J.1146.2007.00499
Citation:
Xi Xu-Gang, Li Zhong-Ning, Luo Zhi-Zeng. SEMG Movement Pattern Recognition of Hand Based on Correlation Analysis and SVM[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2315-2319. doi: 10.3724/SP.J.1146.2007.00499
Xi Xu-Gang, Li Zhong-Ning, Luo Zhi-Zeng. SEMG Movement Pattern Recognition of Hand Based on Correlation Analysis and SVM[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2315-2319. doi: 10.3724/SP.J.1146.2007.00499
Citation:
Xi Xu-Gang, Li Zhong-Ning, Luo Zhi-Zeng. SEMG Movement Pattern Recognition of Hand Based on Correlation Analysis and SVM[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2315-2319. doi: 10.3724/SP.J.1146.2007.00499
In order to extract effectively the feature of SEMG signal, an improved method of feature extraction based on correlation analysis is proposed. Firstly, the paper decreases the noise included in two channel SEMG signals using spatial correlation filtering. Secondly, the paper analyzes SEMG signal after de-noising with 4-scale wavelet transformation and extract wavelet coefficient of the main fringe by arithmetic of correlation analysis. A 6-dimension eigenvector which is constructed with sum of squares of the wavelet coefficient is inputted SVM. The result shows that four movements (wrist spreads, wrist bends, hand extension, hand grasps) are successfully identified by the method of SVM combined with the eigenvector which is constructed at the condition of correlation analysis and wavelet transformation. The more precise classified results can be get than neural network sorter with this method.
Graupe D and Cline W K. Functional separation of EMGsignals via ARMA identification methods for prosthesiscontrol purposes[J]. IEEE Trans. on Syst. Man Cybern, 1975,5(3): 252-259.[2]Hudgins B, Philip Parker, and Scott R N. A new strategy formultifunction myoelectric control. IEEE Trans. on BiomedEng, 1993, 40(1): 82-94.[3]Kang Werr-Jun, et al.. The application of cepstral coefficientsand maximum likelihood method in EMG patternrecognition[J].IEEE Trans. on Biomed Eng.1995, 42(8):777-785[4]罗志增, 杨广映. 表面肌电信号的AR 参数模型分析方法[J].传感技术学报, 2003, 16(4): 384-387.[5]Vapnik V N. An overview of statistical learning theory[J].IEEETrans. on Neural Network.1999, 10(5):988-999[6]Witkin A. Scale-space filtering: A new approach tomulti-scale description[J].IEEE International Conference onICASSP8.1984, 9(3):150-153[7]Xu Yansun, et al.. Wavelet transform domain filters: A spatially selective noise filtration technique[J].IEEE Trans. onImage Processing.1994, 3(6):747-758[8]Mallat S and Hwang W L. Singularity detection andprocessing with wavelets[J].IEEE Trans. on Inform. Theory.1992, 38(2):617-643[9]贾雪琴, 王旭等. 基于小波变换和K-L 展开的单通道表面肌电信号识别. 东北大学学报(自然科学版), 2006, 27(8): 859-862.[10]张学工. 关于统计学习理论与支持向量机. 自动化学报, 2000,26(1): 32-42.[11]王崇文, 李见为, 陈为民. 基于HMM 和SVM 的指纹分类方法[J].电子与信息学报.2003, 25(11):1488-1493浏览[12]Weston J and Watkins C. Multi-class support vectormachines[R]. Royal Holloway College. Tech Rep: CSDTR-98-04, 1998.