Advanced Search
Volume 30 Issue 2
Jan.  2011
Turn off MathJax
Article Contents
Zhang Zheng-wei, Fan Yang-yu, Wang Jie-tai. Estimation of Shadowing Trajectory of the Nonlinear Systemfrom a Noisy Scalar Series[J]. Journal of Electronics & Information Technology, 2008, 30(2): 371-374. doi: 10.3724/SP.J.1146.2007.00396
Citation: Zhang Zheng-wei, Fan Yang-yu, Wang Jie-tai. Estimation of Shadowing Trajectory of the Nonlinear Systemfrom a Noisy Scalar Series[J]. Journal of Electronics & Information Technology, 2008, 30(2): 371-374. doi: 10.3724/SP.J.1146.2007.00396

Estimation of Shadowing Trajectory of the Nonlinear Systemfrom a Noisy Scalar Series

doi: 10.3724/SP.J.1146.2007.00396
  • Received Date: 2007-03-20
  • Rev Recd Date: 2007-09-26
  • Publish Date: 2008-02-19
  • The presence of homoclinic tangencies and homoclinic intersection makes it very difficult, sometimes even impossible, to estimate the shadowing trajectory of the non-hyperbolic nonlinear system. A new algorithm for shadowing the non-hyperbolic nonlinear system is presented in this paper, which is geometrical in nature and tries to exploit the properties of the chaotic systems. Different from former methods, this method computes the stable and unstable manifolds of the noisy trajectory firstly, and then the locations of the homoclinic tangencies are determined. Thus the effects of the homoclinic tangencies on the algorithm can be decreased to a great extent, and the length of the shadowing trajectories are estimated by the locations of these homoclinic tangencies. Also different from those methods which take it as granted that the mechanism of failure of shadowing algorithms is related with the homoclinic tangencies only, experiments in this paper demonstrate a quantitative relation between the minimal distance of homoclinic intersections and the amplitude of noise. Thus the probability that the algorithm converges to the true trajectory can be boosted efficiently, and without any doubts, this strategy can be as a heuristic approach to other methods.
  • loading
  • Brian A C, Hseyin K, and Kenneth J P. Shadowing orbits ofordinary differential equations [J].Journal of Computationaland Applied Mathematics.1994, 52(1-3):35-43[2]Eric J K and Thomas S. Noise reduction in chaotictime-series data : A survey of common methods [J].Phys. Rev.E.1993, 48(3):1752-1763[3]Grebogi C, Hammel S M, and Yorke A J. Do numerical orbitsof chaotic dynamical process represent true orbits [J]. JComplexity, 1987, 3(2): 136-145.[4]Bowen R. -limit sets for axiom A diffeomorphisms [J].JDiff. Eqs.1975, 18(2):333-339[5]Grebogi C, Hammel S M, Yorke J A, and Sauer T. Shadowingof physical trajectories in chaotic dynamics: containment andrefinement [J].Phys. Rev. Lett.1990, 65(13):1527-1530[6]Sauer T and Yorke J A. Rigorous verification of trajectoriesfor the computer simulation of dynamical systems [J].Nonlinearity.1991, 4(3):961-979[7]Farmer J D and Sidorowich J J. Optimal shadowing and noisereduction [J].Physica D.1991, 47(3):373-392[8]Walker D M and Mees A I. Noise reduction of chaotic systemsby Kalman filtering and by shadowing [J].Int. J. Bifurc.Chaos.1997, 7(3):769-779[9]Davies M. Noise reduction by gradient descent [J]. Int. J.Bifurc. Chaos, 1992, 3(1): 113-118.[10]David R and Kevin J. Convergence properties of gradientdescent noise reduction [J].Physical D.2002, 165(1-2):26-47[11]Grassberger P, Hegger R, Kantz H, Schaffrath C, andSchreiber T. On noise reduction methods for chaotic data [J].Chaos.1993, 3(2):127-141[12]Takens F. Detecting Strange Attractors In Fluid Turbulence.in : Dynamical Systems and Turbulence [M]. edited by RandD and Young L S, Berlin, Springer, 1981: 365-381.[13]Voss H U, Timmer J, and Kurths J. Nonlinear dynamicaldystem identification from uncertain and indirectmeasurements [J].Int. J. Bifurc. Chaos.2004, 14(6):1905-1933[14]Oseledec V I. A multiplicative ergodic theorem : Lyapunovcharacteristic numbers for dynamical systems [J]. Trans. onMoscow Math. Soc., 1968, 19: 197-221.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3049) PDF downloads(637) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return