Brian A C, Hseyin K, and Kenneth J P. Shadowing orbits ofordinary differential equations [J].Journal of Computationaland Applied Mathematics.1994, 52(1-3):35-43[2]Eric J K and Thomas S. Noise reduction in chaotictime-series data : A survey of common methods [J].Phys. Rev.E.1993, 48(3):1752-1763[3]Grebogi C, Hammel S M, and Yorke A J. Do numerical orbitsof chaotic dynamical process represent true orbits [J]. JComplexity, 1987, 3(2): 136-145.[4]Bowen R. -limit sets for axiom A diffeomorphisms [J].JDiff. Eqs.1975, 18(2):333-339[5]Grebogi C, Hammel S M, Yorke J A, and Sauer T. Shadowingof physical trajectories in chaotic dynamics: containment andrefinement [J].Phys. Rev. Lett.1990, 65(13):1527-1530[6]Sauer T and Yorke J A. Rigorous verification of trajectoriesfor the computer simulation of dynamical systems [J].Nonlinearity.1991, 4(3):961-979[7]Farmer J D and Sidorowich J J. Optimal shadowing and noisereduction [J].Physica D.1991, 47(3):373-392[8]Walker D M and Mees A I. Noise reduction of chaotic systemsby Kalman filtering and by shadowing [J].Int. J. Bifurc.Chaos.1997, 7(3):769-779[9]Davies M. Noise reduction by gradient descent [J]. Int. J.Bifurc. Chaos, 1992, 3(1): 113-118.[10]David R and Kevin J. Convergence properties of gradientdescent noise reduction [J].Physical D.2002, 165(1-2):26-47[11]Grassberger P, Hegger R, Kantz H, Schaffrath C, andSchreiber T. On noise reduction methods for chaotic data [J].Chaos.1993, 3(2):127-141[12]Takens F. Detecting Strange Attractors In Fluid Turbulence.in : Dynamical Systems and Turbulence [M]. edited by RandD and Young L S, Berlin, Springer, 1981: 365-381.[13]Voss H U, Timmer J, and Kurths J. Nonlinear dynamicaldystem identification from uncertain and indirectmeasurements [J].Int. J. Bifurc. Chaos.2004, 14(6):1905-1933[14]Oseledec V I. A multiplicative ergodic theorem : Lyapunovcharacteristic numbers for dynamical systems [J]. Trans. onMoscow Math. Soc., 1968, 19: 197-221.
|