Huan Ruo-Hong, Yang Ru-Liang. Synthetic Aperture Radar Image Target Recognition Based on Multi-Images of the Same Target and Hidden Markov Models[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2051-2054. doi: 10.3724/SP.J.1146.2007.00334
Citation:
Huan Ruo-Hong, Yang Ru-Liang. Synthetic Aperture Radar Image Target Recognition Based on Multi-Images of the Same Target and Hidden Markov Models[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2051-2054. doi: 10.3724/SP.J.1146.2007.00334
Huan Ruo-Hong, Yang Ru-Liang. Synthetic Aperture Radar Image Target Recognition Based on Multi-Images of the Same Target and Hidden Markov Models[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2051-2054. doi: 10.3724/SP.J.1146.2007.00334
Citation:
Huan Ruo-Hong, Yang Ru-Liang. Synthetic Aperture Radar Image Target Recognition Based on Multi-Images of the Same Target and Hidden Markov Models[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2051-2054. doi: 10.3724/SP.J.1146.2007.00334
This paper presents a method for synthetic aperture radar images target recognition based on multi images of the same target and Hidden Markov Models (HMM). Feature vectors of target images are extracted with principal component analysis in wavelet domain. Feature sequences of an image are obtained from the feature vectors of multi images of the same target in different azimuths. Target recognition is carried out for feature sequences with the HMM. The experiments results show that the correctness of recognition is enhanced obviously with the proposed method, and it is an effective method for SAR images target recognition.
[1] Ross T D, Worrell S W, and Velten V J, et al.. Standard SARATR evaluation experiments using the MSTAR public releasedata set[J].Proc. SPIE.1998, Vol. 3370:566-573 [2] Zhao Q and Principe J C. Support vector machines for SARautomatic target recognition[J].IEEE Trans. on Aerospace andElectronic Systems.2001, 37(2):643-654 [3] Kottke D P and Fiore P D. A design for HMM-based SARATR[J].Proc. SPIE.1998, Vol. 3370:541-551 [4] Nilubol C and Pham Q H. Translational and rotationalinvariant hidden Markov model for automatic targetrecognition[J].Proc. SPIE.1998, Vol. 3374:179-185 [5] Nilubol C and Mersereau R M. An improved hidden Markovmodel classifier for SAR imaged[J].Proc. SPIE.1999, Vol.3720:113-122 [6] Albrecht T W and Gustafson S C. Hidden Markov models forclassifying SAR target images. Proc.[J]. SPIE.2004,Vol. 5427:302- [7] Rabiner L. A tutorial on hidden Markov models and selectedapplications in speech recognition[J].Proc. IEEE.1989, 77:257-286 [8] Sandirasegaram N and Englisth R. Comparative analysis offeature extraction (2D FFT and wavelet) and classification(Lp metric distances, MLP NN, and HNeT) algorithms forSAR imagery[J].Proc. SPIE.2005, Vol. 5808:314-325