Advanced Search
Volume 30 Issue 9
Jan.  2011
Turn off MathJax
Article Contents
Hou Dai-Wen, Yin Fu-Liang. A Dual Particle Filter for State and Parameter Estimation in Nonlinear System[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2128-2133. doi: 10.3724/SP.J.1146.2007.00273
Citation: Hou Dai-Wen, Yin Fu-Liang. A Dual Particle Filter for State and Parameter Estimation in Nonlinear System[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2128-2133. doi: 10.3724/SP.J.1146.2007.00273

A Dual Particle Filter for State and Parameter Estimation in Nonlinear System

doi: 10.3724/SP.J.1146.2007.00273
  • Received Date: 2007-02-13
  • Rev Recd Date: 2007-09-28
  • Publish Date: 2008-09-19
  • The dual particle filter is proposed to solve the problem of simultaneously estimating the state and the parameter of a nonlinear dynamic system. In the new filter, the sufficient statistics based particle filter is adopted to deal with sampling impoverishment arising in generic particle filter and the beta distribution, which makes good use of the prior knowledge as well as avoids tail draws for the parameter, is used to fit the parametric a posteriori probability density function. Simulation results show that both estimation accuracy and initial sensitivity of the nonlinear system are improved.
  • loading
  • [1] Kalman R. A new approach to linear filtering and predictionproblem. Trans. of the ASME-Journal of Basic Engineering,1960, 82(D): 34-45. [2] Jazwinski A H. Stochastic Processes and Filtering Theory.New York: Academic press, 1970: 281-286. [3] Dempster A P, Laird N M, and Rubin D B. Maximumlikelihood from incomplete data via the EM algorithm.Journal of the Royal Statistical Society, 1977, Series B, 39(1):1-38. [4] Goodwin G C and Agero J C. Approximate EM algorithmsfor parameter and state estimation in nonlinear stochasticmodels. Proceedings of the 44th IEEE Conference onDecision and Control, and the European Control Conference2005. Seville, Spain, 2005: 368-373. [5] Lange K A. Gradient algorithm locally equivalent to the EMalgorithm. Journal of the Royal Statistical Society, 1995,Series B, 59(2): 425-437. [6] Berzuini C and Best N G, et al.. Dynamic conditionalindependence models and Markov chain Monte Carlomethods[J].Journal of the American Statistical Association.1997, 92(440):1403-1441 [7] Gordon N, Salmond D, and Smith A F M. Novel approach tononlinear and non-Gaussian Bayesian state estimation. IEEProceedings-F, 1993, 140(2): 107-113. [8] Liu J and West M. Combined parameter and state estimationin simulation-based filtering. in Sequential Monte Carlo inPractice, A. Doucet, N. de Freitas, and N. Gordon, Eds. NewYork: Springer-Verlag, 2001: 197-223. [9] Storvik G. Particle filters in state space models with thepresence of unknown static parameters[J].IEEE Trans. onSignal Processing.2002, 50(2):281-289 [10] Wan E A and Nelson A T. Dual extended Kalman filtermethods. in Kalman Filtering and Neural Networks, S.Haykin, Eds. New York: John Wiley and Sons, Inc., 2001:123-173. [11] Arulampalam M S and Maskell S, et al.. A tutorial on particlefilters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans. on Signal Processing.2002, 50(2):174-188 [12] Minvielie P and Marrs A D, et al.. Joint target tracking andidentification: part I: sequential Monte Carlo model-basedapproaches. 8th International Conference on InformationFusion. Philadelphia, USA: FUSION'2005: 25-29. [13] Ristic B and Farina A, et al.. Performance bounds andcomparison of nonlinear filters for tracking a ballistic objecton re-entry[J].IEE Proceedings on Radar, Sonar andNavigation.2003, 150(2):65-70 [14] 帕普里斯A, 佩莱S. 保铮等译. 概率、随机变量与随机过程.西安:西安交通大学出版社,2004: 70-72. [15] Kay S M. 罗鹏飞,张文明等译. 统计信号处理基础估计与检测理论. 北京:电子工业出版社,2006: 85-102. [16] Anderson B and Moore J. Optimal Filtering. EnglewoodCliffs, NJ: Prentice-Hall. 1979: 193-222. [17] Kitagawa G. A nonlinear smoothing method for time seriesanalysis. Statistica Sinica, 1991, 1(2): 371-388. [18] Chen E J. Simulation-based estimation of quantiles.Proceedings of the 31st conference on Winter simulation,Arizona, United States, 1999: 428-434. [19] Athans R and Berolini A. Suboptimal state estimation forcontinuous-time nonlinear systems from discrete noisymeasurements[J].IEEE Trans. on Automatic Control.1968,13(5):504-514 [20] Diaz-Garcia J A and Jaimez R G. Noncentral matrix variatebeta distribution. available from http: // www.cimat.mx/reportes/enlinea/I-06-06.pdf. 2006.12. 24. [21] Wagle B. Multivariate beta distribution and a test formultivariate normality. Journal of the Royal StatisticalSociety, 1968, Series B, 30(3): 511-516.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3965) PDF downloads(1272) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return