Advanced Search
Volume 30 Issue 8
Jan.  2011
Turn off MathJax
Article Contents
Chen Xi-you, Li Guan-lin. Synthesize Piecewise Linear Chaotic System with Shilnikov Theorem[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1932-1935. doi: 10.3724/SP.J.1146.2007.00130
Citation: Chen Xi-you, Li Guan-lin. Synthesize Piecewise Linear Chaotic System with Shilnikov Theorem[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1932-1935. doi: 10.3724/SP.J.1146.2007.00130

Synthesize Piecewise Linear Chaotic System with Shilnikov Theorem

doi: 10.3724/SP.J.1146.2007.00130
  • Received Date: 2007-01-23
  • Rev Recd Date: 2007-05-21
  • Publish Date: 2008-08-19
  • According to the heteroclinic shilnikov theorem, a kind of piecewise linear chaotic system is presented in this paper. These systems have at least two equilibriums and at each equilibrium they have the same Jacobian. Changing the equilibriums and the separating planes, the other forms of these systems can be got. Theoretical analysis and experimental results confirm the method is effective.
  • loading
  • Rasler O E. An equation for continuous chaos. PhysicsLetters A, 1976, 57(5): 397-398.[2]Chua L O and Lin G N. Canonical realization of Chua抯circuit family[J].IEEE Trans. on Circuits and Systems.1990,37(7):885-902[3]Chen G and Ueta T. Yet another chaotic attractor[J].International Journal of Bifurcation and Chaos.1999, 9(7):1465-1466[4]Elwakil A S and Kennedy M P. A system for chaos generationand its implementation in monolithic form. IEEEInternational Symposium on Circuits and Systems [C],Geneva, 2000: 217-220.[5]Yalcin M E, Ozoguz S, and Suykens J A K, et al.. n-scrollchaos generators: a simple circuit model[J].Electronics Letters.2001, 37(3):147-148[6]Wang X F and Chen G R. Generating topologically conjugatechaotic systems via feedback control[J].IEEE Trans. onCircuits and Systems.2003, 50(6):812-817[7]Takahashi Y and Saito T. A simple Hyperchaos generatorbased on impulsive switching[J].IEEE Trans. on Circuits andSystems.2004, 51(9):468-472[8]Wang X F and Chen G R. Chaotification of continuous-timesystems via time-delay feedback. International Conference onControl of Oscillations and Chaos[C], St.Petersburg, 2000, 2:213-216.[9]Chua L O, Komuro M, and Matsumoto T. The double scrollfamily. IEEE Trans. on Circuits and Systems, 1986, 33(11):1073-1118.[10]Li Z, Chen G R, and Halang W A. Homoclinic andheteroclinic orbits in a modified Lorenz system. InformationSciences, 2004, 165(3): 235-245.[11]Zhou Tinshou, Chen Guanrong, and Yang Qigui.Constructing a new chaotic system based on the Shilnikovcriterion[J].Chaos Solitons Fractals.2004, 19(9):985-993[12]Silva C P. Shilnikovs theorem-A tutorial. IEEE Trans. onCircuits and Systems, 1993, 40(10): 675-682.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3392) PDF downloads(1026) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return