Rasler O E. An equation for continuous chaos. PhysicsLetters A, 1976, 57(5): 397-398.[2]Chua L O and Lin G N. Canonical realization of Chua抯circuit family[J].IEEE Trans. on Circuits and Systems.1990,37(7):885-902[3]Chen G and Ueta T. Yet another chaotic attractor[J].International Journal of Bifurcation and Chaos.1999, 9(7):1465-1466[4]Elwakil A S and Kennedy M P. A system for chaos generationand its implementation in monolithic form. IEEEInternational Symposium on Circuits and Systems [C],Geneva, 2000: 217-220.[5]Yalcin M E, Ozoguz S, and Suykens J A K, et al.. n-scrollchaos generators: a simple circuit model[J].Electronics Letters.2001, 37(3):147-148[6]Wang X F and Chen G R. Generating topologically conjugatechaotic systems via feedback control[J].IEEE Trans. onCircuits and Systems.2003, 50(6):812-817[7]Takahashi Y and Saito T. A simple Hyperchaos generatorbased on impulsive switching[J].IEEE Trans. on Circuits andSystems.2004, 51(9):468-472[8]Wang X F and Chen G R. Chaotification of continuous-timesystems via time-delay feedback. International Conference onControl of Oscillations and Chaos[C], St.Petersburg, 2000, 2:213-216.[9]Chua L O, Komuro M, and Matsumoto T. The double scrollfamily. IEEE Trans. on Circuits and Systems, 1986, 33(11):1073-1118.[10]Li Z, Chen G R, and Halang W A. Homoclinic andheteroclinic orbits in a modified Lorenz system. InformationSciences, 2004, 165(3): 235-245.[11]Zhou Tinshou, Chen Guanrong, and Yang Qigui.Constructing a new chaotic system based on the Shilnikovcriterion[J].Chaos Solitons Fractals.2004, 19(9):985-993[12]Silva C P. Shilnikovs theorem-A tutorial. IEEE Trans. onCircuits and Systems, 1993, 40(10): 675-682.
|