Advanced Search
Volume 30 Issue 8
Jan.  2011
Turn off MathJax
Article Contents
Liu Jia, Wang Hong-qi. A Graph Cuts Based Interactive Image Segmentation Method[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1973-1976. doi: 10.3724/SP.J.1146.2007.00075
Citation: Liu Jia, Wang Hong-qi. A Graph Cuts Based Interactive Image Segmentation Method[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1973-1976. doi: 10.3724/SP.J.1146.2007.00075

A Graph Cuts Based Interactive Image Segmentation Method

doi: 10.3724/SP.J.1146.2007.00075
  • Received Date: 2007-01-11
  • Rev Recd Date: 2007-09-11
  • Publish Date: 2008-08-19
  • Interactive image segmentation methods have recently gained more and more attentions. A new interactive segmentation method is proposed based on the graph cuts. It combines several image features like texture, color and edge together through a probabilistic model. Texture and color features are modeled with histograms. Dimensionality reduction in feature space is achieved with a fisher discriminant criterion based on texton. The global optimal segmentation can be efficiently computed via graph cuts. Efficiency and accuracy of the method is demonstrated on aerial image segmentation and some other applications.
  • loading
  • Rother C, Kolmogorov V, and Blake A. GrabCut interactive foreground extraction using iterated graph cuts[J].ACM Trans. Graphics, Los Angeles.2004, 23(3):309-314[2]Boykov Y and Jolly M P. Interactive graph cuts for optimalboundary region segmentation of objects in N-D images.International Conference on Computer Vision, Vancouver,BC, Canada, 2001, 1: 105-112.[3]Malik J, Belongie S, Shi J, and Leung T. Textons, contoursand regions: cue integration in image segmentation.International Conference on Computer Vision, Kerkyra,Corfu, Greece, 1999, 2: 918-925.[4]Leung T and Malik J. Representing and recognizing thevisual appearance of materials using three-dimensionaltextons[J].International Journal of Computer Vision.2001,43(1):29-44[5]Varma M and Zisserman A. Unifying statistical textureclassification frameworks. Image and Vision Computing, 2004,22(14): 1175-1183.[6]Stan Z L. Markov Random Field Modeling in Image Analysis.Inc. Secaucus, NJ, USA, Springer-Verlag New York, 2001, 18.[7]Kolmogorov V and Zabih R. What energy functions can beminimized via graph cuts? IEEE Trans[J].on Pattern Analysisand Machine Intelligence.2004, 26(2):147-159[8]Thomas H C, Charles E L, Ronald L R, and Clifford S.Introduction to Algorithm, 2nd Edition. Cambridge, MA,USA, The MIT Press, 2001, 656.[9]Boykov Y and Kolmogorov V. An experimental comparisonof min-cut/max-flow algorithms for energy minimization invision[J].IEEE Trans. on Pattern Analysis and MachineIntelligence.2004, 26(9):1124-1137
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3653) PDF downloads(2698) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return