Advanced Search
Volume 30 Issue 9
Jan.  2011
Turn off MathJax
Article Contents
Liu Jing, Zhang Jun-Ying, Du Lan. A Frame Segmentation Method for Radar HRRPs Based on Correlation Coefficient[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2060-2064. doi: 10.3724/SP.J.1146.2007.00072
Citation: Liu Jing, Zhang Jun-Ying, Du Lan. A Frame Segmentation Method for Radar HRRPs Based on Correlation Coefficient[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2060-2064. doi: 10.3724/SP.J.1146.2007.00072

A Frame Segmentation Method for Radar HRRPs Based on Correlation Coefficient

doi: 10.3724/SP.J.1146.2007.00072
  • Received Date: 2007-01-11
  • Rev Recd Date: 2007-07-18
  • Publish Date: 2008-09-19
  • Target-aspect sensitivity makes High Resolution Range Profiles (HRRP) become a long sequence with statistical characteristic changing continuously. A novel frame segmentation method based on correlation coefficient is presented according to the statistical characteristic changes of HRRP sequence. Experimental results for measured data show that the presented method can exactly divide the statistical characteristic changes of HRRPs and the resulting frames are coincident with flying trajectory. Template Matching Method (TMM) classifier in time domain, shortest distance classifier and Support Vector Machine (SVM) classifier in frequency domain are used to evaluate recognition performances. Comparing with the current uniform frame segmentation method based on scattering center model, the presented method efficiently improves the recognition rates.
  • loading
  • [1] Webb A R. Gamma mixture models for target recognition[J].Pattern Recognition.2000, 33(12):2045-2054 [2] Copsey K and Webb A R. Bayesian Gamma mixture modelapproach to radar target recognition. IEEE Trans. on AES,2003, 39(4): 1201-1217. [3] Jacobs S P and Osollivan J A. Automatic target recognitionusing high-resolution radar range profiles. [Ph.D.], St. Louis:Washington University, 1999. [4] Van der Heiden R and Groen F C A. The box-cox metric fornearest neighbour classification improvement. PatternRecognition, 1997, 30(2): 273-279. [5] Xing Mengdao and Bao Zheng. The properties of rangeprofiles of aircraft. Chinese Journal of Electronics, 2002,11(1): 1-6. [6] Rothwell E J, Cheng K M, and Nyquist D P. Anadaptive-window-width short time Fourier transform forvisualization of radar target substructure resonances[J].IEEETrans. on Antenna and Propagation.1998, 46(9):1393-1395 [7] 廖学军. 基于高分辨距离像的雷达目标识别. [博士论文], 西安: 西安电子科技大学, 1999.Liao Xue-jun. Radar target recognition base on highresolution range profiles. [Ph.D.], Xian: Xidian university,1999. [8] Zyweck A and Bogner R E. Radar target classification ofcommercial aircraft. IEEE Trans. on AES, 1996, 32(2):598-606. [9] 裴炳南. 高分辨雷达自动目标识别方法研究. [博士论文], 西安: 西安电子科技大学, 2002.Pei Bing-nan. Study of high resolution radar automatic targetrecognition method. [Ph.D.], Xian: Xidian university, 2002. [10] 保铮,邢孟道,王彤. 雷达成像技术. 北京: 电子工业出版社,2005: 19-45.Bao Zheng, Xing Meng-dao, and Wang Tong. Radar ImagingTechnique. Beijing: Pulishing House of Electronics Inustry,2005: 19-45. [11] 杜兰,刘宏伟,保铮,等. 一种利用目标雷达高分辨距离像幅度起伏特性的特征提取新方法[J]. 电子学报,2005, 3(33):411-415.Du Lan, Liu Hong-wei, and Bao Zheng, et al.. A new featureextraction method using the amplitude fluctuation propertyof target HRRPs for radar automatic target recognition. ActaElectonica Sinica, 2005, 3(33): 411-415.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3335) PDF downloads(861) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return