Advanced Search
Volume 30 Issue 8
Jan.  2011
Turn off MathJax
Article Contents
Li Heng-chao, Hong Wen, Wu Yi-rong. NeighShrink Despeckling for SAR Images Based on Scale Space Correlation[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1940-1943. doi: 10.3724/SP.J.1146.2007.00054
Citation: Li Heng-chao, Hong Wen, Wu Yi-rong. NeighShrink Despeckling for SAR Images Based on Scale Space Correlation[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1940-1943. doi: 10.3724/SP.J.1146.2007.00054

NeighShrink Despeckling for SAR Images Based on Scale Space Correlation

doi: 10.3724/SP.J.1146.2007.00054
  • Received Date: 2007-01-09
  • Rev Recd Date: 2008-01-16
  • Publish Date: 2008-08-19
  • To effectively suppress speckle noise and preserve structure information of SAR images, a NeighShrink despeckling based on scale space correlation is proposed in this paper. Firstly, for detail subbands of logarithmically transformed SAR images decomposed by stationary wavelet transform, the single selective scale space correlation with tunable parameter is introduced to separate the wavelet coefficients related to noise and the ones related to structure information. Subsequently, as regards the former, the NeighShrink is directly taken advantage of to obtain good smoothing effect. For the latter, the weighted NeighShrink is proposed to achieve the preservation of structure information. The experimental results verify the validity of the proposed method.
  • loading
  • Oliver C and Quegan S. Understanding Synthetic ApertureRadar Images. Boston: Artech House, 1998, chapter 6:157-193.[2]Lee J S. Digital image enhancement and noise filtering by useof local statistics. IEEE Trans. on Pattern Analysis andMachine Intelligence, 1980, 2(3): 992-1000.[3]Kuan D T, Sawchuk A A, Strand T C, and Chavel P.Adaptive restoration of images with speckle[J].IEEE Trans. onAcoustics, Speech, and Signal Processing.1987, 35(2):373-383[4]Frost V S, Stiles J A, Sanmugan K S, and Holtzman J C. Amodel for radar images and its application to adaptive digitalfiltering of multiplicative noise[J].IEEE Trans. on PatternAnalysis and Machine Intelligence.1982, 4(2):157-165[5]Lopes A, Nezry E, Touzi R, and Laur H. Maximum aposterior speckle filtering and first order texture models inSAR images. Proc. IGARSS90, Washington, D.C., USA,1990: 2409-2412.[6]Donoho D L and Johnstone I M. Ideal spatial adaptation viawavelet shrinkage[J].Biometrika.1994, 81(5):425-455[7]Donoho D L and Johnstone I M. Adapting to unknownsmoothness via wavelet shrinkage[J].Journal of the AmericanStatistical Association.1995, 90(432):1200-1224[8]Thitimajshima P. SAR images speckle noise reduction bywavelet thresholding[J].Proc. IGARSS99, Hamburg, Germany.1999, (2):55-88[9]Cai T and Silverman B W. Incorporating information onneighboring coefficients into wavelet estimation. Sankhya:Indian Journal of Statistics, Series B, 2001, 63(2): 127-148.[10]Chen G Y, Bui T D, and Krzyzak A. Image denoising usingneighboring wavelet coefficients[J].Proc. ICASSP04, Montreal,Canada.2004, (2):917-920[11]Nanson G P and Silverman B W. Stationary wavelettransform and some statistical applications. Wavelet andStatistics, Lecture Notes in Statistics, Berlin: Springer-Verlag,1995: 281-299.[12]Xie H, Pierce L E, and Ulaby F T. Statistical properties oflogarithmically transformed speckle. IEEE Trans. onGeoscience and Remote Sensing, 2002, 40(3): 712-727.[13]Xu Y S, Weaver J B, Healy D M, and Lu J. Wavelettransform domain filters: a spatially selective noise filterationtechnique[J].IEEE Trans. on Image Processing.1994, 3(6):747-758[14]Simard M, DeGrandi G, Thomson K P B, and Benie G B.Analysis of speckle noise contribution on waveletdecomposition of SAR images[J].IEEE Trans. on Geoscienceand Remote Sensing.1998, 36(6):1953-1962[15]Touzi R. A review of speckle filtering in the context ofestimation theory[J].IEEE Trans. on Geoscience and RemoteSensing.2002, 40(11):2392-2404[16]Guo H.[J].Odegard J E, Lang M, Gopinath R A, Selesnick I W,and Burrus C S. Wavelet based speckle reduction withapplication to SAR based ATD/R. Proc. ICIP94, Austin,USA.1994,:-[17]Achim A, Tsakalides P, and Bezerianos A. SAR imagedenoising via Bayesian wavelet shrinkage based onheavy-tailed model[J].IEEE Trans. on Geoscience and RemoteSensing.2003, 41(8):1773-1784
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3367) PDF downloads(916) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return