Advanced Search
Volume 30 Issue 8
Jan.  2011
Turn off MathJax
Article Contents
Liu Jing, Zhang Jun-ying, Zhao Feng. A New Time-Shift Invariant Feature of Radar HRRPs[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1949-1953. doi: 10.3724/SP.J.1146.2007.00024
Citation: Liu Jing, Zhang Jun-ying, Zhao Feng. A New Time-Shift Invariant Feature of Radar HRRPs[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1949-1953. doi: 10.3724/SP.J.1146.2007.00024

A New Time-Shift Invariant Feature of Radar HRRPs

doi: 10.3724/SP.J.1146.2007.00024
  • Received Date: 2007-01-05
  • Rev Recd Date: 2007-06-28
  • Publish Date: 2008-08-19
  • Radar High-Resolution Range Profile (HRRP) is very sensitive to time-shift; therefore, HRRP-based Radar Automatic Target Recognition (RATR) requires efficient time-shift invariant features. A new time-shift invariant feature, i.e., amplitude spectrum difference of HRRP, is extracted from HRRP to solve the time-shift sensitivity. The result of theoretical analysis shows that, as a time-shift invariant feature, amplitude spectrum difference is more suitable for HRRP-based RATR than amplitude spectrum is. Shortest distance classifier and Support Vector Machine (SVM) classifier are designed to evaluate the recognition performance. Experimental results for measured data show that, comparing with amplitude spectrum, amplitude spectrum difference improves recognition performance remarkably.
  • loading
  • Webb A R. Gamma mixture models for target recognition[J].Pattern Recognition.2000, 33(12):2045-2054[2]Copsey K and Webb A R. Bayesian Gamma mixture modelapproach to radar target recognition[J]. IEEE Trans. on AES,2003, 39(4): 1201-1217.[3]Jacobs S P and Osollivan J A. Automatic target recognitionusing high-resolution radar range profiles [D]. WashingtonUniversity, 1999.[4]Van der Heiden R and Groen F C A. The Box-cox metric fornearest neighbour classification improvement [J]. PatternRecognition, 1997, 30(2): 273-279.[5]Xing Mengdao and Bao Zheng. The properties of rangeprofiles of aircraft[J]. Chinese Journal of Electronics, 2002,11(1): 1-6.[6]Rothwell E J, Cheng K M, and Nyquist D P. Anadaptive-window-width short time Fourier transform forvisualization of radar target substructure resonances [J].IEEE Trans. on Antenna and Propagation.1998, 46(9):1393-1395[7]赵群. 基于高分辨一维距离像的雷达目标识别与检测.[博士论文], 西安: 西安电子科技大学, 1995.Zhao Qun. Radar target recognition and detection based onhigh resolution one dimensional range profiles.[Ph.D.dissertation], Xian: Xidian university, 1995.[8]时宇,张贤达. 基于局部双谱的高分辨距离像雷达目标识别.清华大学学报(自然科学版)[J], 2002, 42(3): 407-410.Shi Yu and Zhang Xianda. Lacal bispectra-based highresolutionradar target recognition with range profiles[J].Journal of TSinghua University (Science and Technology),2002, 42(3): 407-410.[9]Pei Bingnan and Bao Zheng. Logarithm bispectrum basedapproach to high radar range profile for automatic targetrecognition[J].Pattern Recognition.2002, 35(11):2643-2651[10]廖学军. 基于高分辨距离像的雷达目标识别. [博士论文], 西安: 西安电子科技大学, 1999.Liao Xuejun. Radar target recognition base on high resolutionrange profiles. [Ph.D.dissertation], Xian: Xidian university,1999.[11]Zyweck A and Bogner R E. Radar target classification ofcommercial aircraft. IEEE Trans. on AES, 1996, 32(2): 598-606.[12]Zhang Junying, Wang Yue Joseph, Khan J, and Clarke R.Gene selection in class space for molecular classification ofcancer[J].Science in China Series F: Information Sciences.2004, 47(3):301-314
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3110) PDF downloads(882) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return