Chen Xiao-jie, Wang Meng, Liang Chang-hong, Shi Xiao-wei . Modifying MOM-UTD with PO to Compute the Pattern of the Airborne Waveguide Slot Array[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1773-1775. doi: 10.3724/SP.J.1146.2006.02051
Citation:
Chen Xiao-jie, Wang Meng, Liang Chang-hong, Shi Xiao-wei . Modifying MOM-UTD with PO to Compute the Pattern of the Airborne Waveguide Slot Array[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1773-1775. doi: 10.3724/SP.J.1146.2006.02051
Chen Xiao-jie, Wang Meng, Liang Chang-hong, Shi Xiao-wei . Modifying MOM-UTD with PO to Compute the Pattern of the Airborne Waveguide Slot Array[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1773-1775. doi: 10.3724/SP.J.1146.2006.02051
Citation:
Chen Xiao-jie, Wang Meng, Liang Chang-hong, Shi Xiao-wei . Modifying MOM-UTD with PO to Compute the Pattern of the Airborne Waveguide Slot Array[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1773-1775. doi: 10.3724/SP.J.1146.2006.02051
The formula is presented to solve the singular problem of Ludwigs algorithm. And vector field is used as interface to combine Physical Optics (PO) and Uniform Theory of Diffraction (UTD) and MOment Method (MOM) to calculate the airborne antenna. The character of the array is analyzed with MOM, large and simple parts of the plane are analyzed with UTD, and the complex parts are analyzed with PO. The results show that combing these three methods together is a good way for the pattern prediction of the airborne slot array.
Wang Meng, Zhang Yu, and Liang Changhong. Analysis ofairborne antenna using FEM hybrid UTD method [J].Chinese Journal of Radio Science, 2005, 20(3): 395-399.[2]Zhai Huiqing, Wang Lina, and Liang Changhong. A hybridmethod of MoM and PO Modified by UTD [J]. ChineseJournal of Radio Science, 2003, 18(5): 529-533.[3]Wang Maoguang. Geometrical Theory of Diffraction [M].Xian: Publishing house of xidian university, 1994.[4]Ludwig A C. Computation of radiation patterns involvingnumerical double integration [J]. IEEE Trans. on AP, 1968,11(6): 767-769.[5]Pogorzelski R J. On the Ludwig integration algorithm fortriangular subregions[J].Proc. IEEE.1985, 73(4):837-838[6]dos Santos M L X and Rabelo N R. On the Ludwigintegration algorithm for triangular subregeions [J].Proc.IEEE.1986, 74(10):1455-1456[7]Moreira Fernando J S and Prata A. A self-checking predictorcorrectoralgorithm for efficient evaluation of reflectorantenna radiation integrals [J]. IEEE Trans. on AP, 1994,42(2): 246-254.[8]Jensen A. Slotted waveguides: An analysis of T-slotted forarray applications [D]. California USA: California StateUniversity, 2000.