Bachoc C. Application of coding theory to the construction ofmodular lattices[J].J. Combin. Theory Ser. A.1997, 78(1):92-119[2]Udaya P and Siddiqi M U. Optimal large linear complexityfrequency hopping patterns derived from polynomial residuerings[J].IEEE Trans. on Inform.Theory.1998, 44(4):1492-1503[3]Qian J F and Zhu S X. Cyclic codes overk 1p P p F+uF +.+u.F[J].. IEICE Trans. on Fundamentals.2005, E88-A(3):795-797[4]Ozen M and Siap I. Linear codes over [ ]/ sq F u u withrespect to the Rosenbloom-Tasfasman Metric[J].Designs,Codes and Crypt.2006, 38(1):17-29[5]Ling S and Sole P. Duadic codes over 2 2 F+uF [J]. ApplicableAlgebra in Engineering, Communication and Computing,2001, 2(12): 365-379.[6]Siap I. Linear codes over 2 2 F +uF and their completeweight enumerators [J]. Codes and Designs, Ohio State Univ.Math Res. Inst. Publ. 2000, 10(1): 259-271.[7]Bonnecaze A and Udaya P. Cyclic codes and self-dual codesover 2 2 F +uF[J].IEEE Trans. on Inform.Theory.1999, 45(5):1250-1255[8]Gulliver T A and Harada M. Construction of optimal TypeIV self-dual codes over 2 2 F +uF [J].IEEE Trans. onInform.Theory.1999, 45(7):2520-2521[9]Dougherty S T, Gaborit P, and Harada M, et al.. Type IIcodes over 2 2 F +uF[J].IEEE Trans. on Inform.Theory.1997,50(8):1728-1744[10]Massey J L and Justesen C. Polynomial weights and codeconstructions[J].IEEE Trans. on Inform.Theory.1973, 19(1):101-110[11]Castagnoli G, Massey J L, and Schoeller P A, et al.. Onrepeated-root cyclic codes[J].IEEE Trans. on Inform.Theory.1991, 37(3):337-342[12]Van Lint J H. Repeated-root cyclic codes [J].IEEE Trans. onInform. Theory.1991, 37(3):343-345[13]Nechaev A A. Kerdock code in a cyclic form[J](in Russian).Diskr. Math. 1989, 1(1): 123-139.[14]Hammons A R, Kumar P V, and Calderbank A R, et al.. TheZ4-linearily of Kerdock, Preparata, Goethals, and relatedcodes[J].IEEE Trans. on Inform. Theory.1994, 40(1):301-319[15]Abualrub T and Oehmke T. On the generators of Z4 cycliccodes [J].IEEE Trans. on Inform.Theory.2003, 49(9):2126-2133[16]Blackford T. Cyclic codes over Z4 of oddly even length [J].Discrete Mathematics.2003, 128(1):27-46[17]Blackford T. Negacyclic codes over Z4 of even length [J].IEEE Trans. on Inform. Theory.2003, 49(6):1417-1424[18]Dougherty S T and Ling S. Cyclic codes over Z4 of evenlength [J].Designs, Codes and Crypt.2006, 39(1):127-153[19]Salagean A. Repeated-root cyclic and negacyclic codes over afinite chain ring[J].Discrete Appl. Math.2006, 154(2):413-419[20]Dinh H Q and Lopez-Permouth S K. Cyclic and negacycliccodes over finite chain rings[J].IEEE Trans. on Inform.Theory.2004, 50(8):1728-1744[21]Dinh H Q. Negacyclic codes of length 2s over Galois rings[J].IEEE Trans. on Inform. Theory.2005, 51(12):4252-4262[22]李光松,韩文报.有限链环上的循环码及其Mattson-Solomn多项式[J]. 高校应用数学学报A 辑,2004, 19(2): 127-134.Li G S and Han W B. Cyclic codes and their Mattson- Solomnpolynomials over finite chain rings[J]. Appl. Math. J. ChineseUniv. Series A, 2004, 19(2): 127-134.
|