Advanced Search
Volume 30 Issue 7
Jan.  2011
Turn off MathJax
Article Contents
Zhao Chuan-qiang, Wang Hui-yuan, Wu Xiao-juan. Face Recognition Using Improved Null Space Method Based on DCT[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1708-1712. doi: 10.3724/SP.J.1146.2006.01959
Citation: Zhao Chuan-qiang, Wang Hui-yuan, Wu Xiao-juan. Face Recognition Using Improved Null Space Method Based on DCT[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1708-1712. doi: 10.3724/SP.J.1146.2006.01959

Face Recognition Using Improved Null Space Method Based on DCT

doi: 10.3724/SP.J.1146.2006.01959
  • Received Date: 2006-12-13
  • Rev Recd Date: 2007-09-28
  • Publish Date: 2008-07-19
  • Linear Discriminant Analysis(LDA) is one of the most popular linear projection techniques for feature extraction. The major drawback of applying LDA is that it often encounters the Small Sample Size(SSS) problem. Besides, their optimization criteria is not directly related to the classification accuracy. In this paper, an improved null space LDA method based on DCT is proposed to solve both problems. First, by employing the DCT instead of the pixel grouping and redefining the within class scatter matrix, a new null space method is given. Then, combining this method with F-LDA an efficient new feature extraction algrithm is proposed for face recognition. Experimental results show that this method achieves better performance than existing ones.
  • loading
  • Chellappa R, Wilson C L, and Sirohey S. Human andmachine recognition of faces: A survey[J]. Proc. IEEE, 199583(5): 705-740.[2]Fukunaga K. Introduction to Statistical Pattern Recognition.Boston: Academic Press, 2nd edition, 1990: 592.[3]边肇祺, 张长水, 张学工. 模式识别[M]. 北京:清华大学出版社, 2000: 83-87.Bian Z Q, Zhang C S, and Zhang X Z. Pattern Recognition[M]. Beijing: Tsinghua University Press., 2000: 83-87.[4]Belhumeur P N, Hespanha J P, and Kriegman D J. EigenfacesvsFisherfaces: Recognition using class specific linearprojection [J].. IEEE Trans. on Pattern Anal. Mach. Intell.1997, 19(7):711-720[5]Turk M and Pentland A. Face recognition using eigenfaces.Proc. IEEE Conf. on Computer Vision and PatternRecognition, Maui, 1991: 586-591.[6]Yu H and Yang J. A direct LDA algorithm for highdimentionaldata-with application to face recogntion. PatternRecogntion, 2001, 34(10): 2067-2070.[7]Huang R, Liu Q S, Lu H Q, and Ma S D. Solving the smallsample size problem of LDA. Proceedings of InternationalConference on Pattern recognition, Canada, Quebec, 2002:29-32.[8]Chen L F, Liao H M, Lin J C, Ko M T, and Yu G J. A newLDA-based recognition system which can solve the smallsample size problem[J].Pattern Recognition.2000, 33(10):1713-1726[9]Loog M, Duin R P W, and Haeb-UmBach R. Multiclasslinear dimension reduction by weighted pairwise fisher criteria[J].IEEE Trans. on Pattern Analysis and MachineInterlligence.2001, 23(7):762-766[10]Lotlikar R and Kothari R. Fractional-step dimensionalityreduction[J].IEEE Trans. on Pattern Anal. Mach. Intell.2000, 22(6):623-627
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3461) PDF downloads(1002) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return