Advanced Search
Volume 30 Issue 7
Jan.  2011
Turn off MathJax
Article Contents
Gao Hong-yuan, Diao Ming, Zhao Zhong-kai . Multiuser Detector Based on Immune Clonal Quantum Algorithm[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1566-1570. doi: 10.3724/SP.J.1146.2006.01900
Citation: Gao Hong-yuan, Diao Ming, Zhao Zhong-kai . Multiuser Detector Based on Immune Clonal Quantum Algorithm[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1566-1570. doi: 10.3724/SP.J.1146.2006.01900

Multiuser Detector Based on Immune Clonal Quantum Algorithm

doi: 10.3724/SP.J.1146.2006.01900
  • Received Date: 2006-12-01
  • Rev Recd Date: 2007-08-13
  • Publish Date: 2008-07-19
  • Based on the immune clonal selection theory and the novel genetic quantum algorithm, an Immune Clonal Quantum Algorithm (ICQA) is proposed to solve high complexity of optimum multiuser detection in code division multiple access systems. Using this algorithm, the vaccine based on Hopfield neural network is inoculated into the Clonal Quantum Algorithm (CQA ) to improve further the fitness of the population at each generation. Such a hybridization of the CQA with the stochastic Hopfield neural network reduces its computational complexity by providing faster convergence. In addition, a better initial data estimation supplied by the CQA improves the performance of the vaccine, and the inoculated vaccine improves the performance of the CQA. The uniform theoretic framework of the making vaccine based on the stochastic Hopfield neural network is presented. Simulation results show that the proposed detector not only can achieves the global optimization value in fast convergence rate, but also is obviously superior to the conventional detector and the multiuser detectors based on previous intelligent algorithms in cancellation of the multiple access interference and the near-far effect.
  • loading
  • Zhang J H, Huai J P, and Xiao R Y, et al.. Resourcemanagement in the next generation DS-CDMA cellularnetworks[J].IEEE Communications Magazine.2004, 11(4):52-58[2]Ergun C and Hacioglu K. Multiuser detection using a geneticalgorithm in CDMA communications systems[J].IEEE Trans.on Commun.2000, 48(8):1374-1383[3]杨红孺,高洪元,庞伟正等. 基于离散粒子优化算法的多用户检测器[J]. 哈尔滨工业大学学报, 2005, 37(9): 1303-1306.Yang H R, Gao H Y, and Pang W Z, et al.. Multiuser detectorbased on discrete particle swarm optimization algorithm [J].Journal of Harbin Institute of Technology, 2005, 37(9):1303-1306.[4]焦李成, 慕彩红, 王伶. 通信中的智能信号处理[M]. 电子工业出版社, 2006.Jiao L C, Mu C H, and Wang L. Intelligent Signal Processingfor Communications[M]. Publishing House of ElectronicsIndustry, 2006.[5]Verdu S. Minimum probability of error for asynchronousGaussian multiple-access channels[J].IEEE Trans. on InfoTheory.1986, 32(1):85-96[6]Han K H and Kim J H. Genetic quantum algorithm and itsapplication to combinatorial optimization problem[A].Proceedings of the 2000 IEEE International Conference onEvolutionary Computation[C].California, CA, USA: IEEEPress, 2000: 1354-1360.[7]Manolakos E S. Hopfield neural network implementation ofthe optimal CDMA multiuser detector[J].IEEE Transactionson Neural Networks.1996, 7(1):131-141[8]De Castro L N and Von Zuben F J. The clonal selectionalgorithm with engineering application[A]. Genetic andevolutionary computation conference [C]. Las vegas, USA,2000: 36-37.[9]王永刚, 焦李成. 基于随机Hopfield 神经网络的最优多用户检测器[J]. 电子学报, 2004, 32(10): 1630-1634.Wang Y G and Jiao L C. Optimal multiuser detectors basedon the schochastic Hopfield network[J]. Actc ElectrionicaSinica, 2004, 32(10): 1630-1634.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3395) PDF downloads(785) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return