Advanced Search
Volume 30 Issue 7
Jan.  2011
Turn off MathJax
Article Contents
Liu Jian, Huang Zhi-tao, Zhou Yi-yu. Joint 2-D Angle and Noncircularity Phase Estimation[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1666-1670. doi: 10.3724/SP.J.1146.2006.01872
Citation: Liu Jian, Huang Zhi-tao, Zhou Yi-yu. Joint 2-D Angle and Noncircularity Phase Estimation[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1666-1670. doi: 10.3724/SP.J.1146.2006.01872

Joint 2-D Angle and Noncircularity Phase Estimation

doi: 10.3724/SP.J.1146.2006.01872
  • Received Date: 2006-11-27
  • Rev Recd Date: 2007-05-25
  • Publish Date: 2008-07-19
  • A novel joint 2-D angle and noncircularity phase estimation for noncircular signals using dual parallel linear subarrays called extended NC-MUSIC (EN-MUSIC) algorithm is presented. The azimuth, the elevation and the noncircularity phases estimated by EN-MUSIC are paired automatically. The resolvable number of sources for EN-MUSIC can be larger than the number of sensors of each subarray. The estimation precision of 2-D angles by EN-MUSIC algorithm is approximately equal to two dimensional unitary ESPRIT for noncircular signals (2D-NC-UESPRIT), and is better than the DOA Matrix (DOAM) algorithm.
  • loading
  • Abeida H and Delmas J P. MUSIC-like estimation ofdirection of arrival for noncircular sources [J].IEEE Trans.on Signal Processing.2006, 54(7):2678-2690[2]Haardt M and Romer F. Enhancements of unitary ESPRITfor non-circular sources [C]. IEEE Proc. Int. Conf. Acoustics,Speech, Signal Processing (ICASSP), Montral, QC, Canada,May 17-21, 2004, vol. II: 101-104.[3]Charge P, Wang Y, and Saillard J. A noncircular sourcesdirection finding method using polynomial rooting [J]. SignalProcessing, 2001, 81(6): 1765-1770.[4]Roemer F and Haardt M. Efficient 1-D and 2-D DOAestimation for non-circular sources with hexagonal shapedespar arrays [C]. IEEE Proc. Int. Conf. Acoustics, Speech,Signal Processing (ICASSP), Toulouse, France, May, 2006,vol. IV: 881-884.[5]Delmas J P. Asymptotically minimum variance second-orderestimation for noncircular signals with application to DOAestimation [J].IEEE Trans. on Signal Processing.2004, 52(5):1235-1241[6]Delmas J P and Abeida H. Stochastic Cramer-Rao bound fornoncircular signals with application to DOA estimation [J].IEEE Trans. on Signal Processing.2004, 52(11):3192-[7]殷勤业,邹理和,and Newcomb R W. 一种高分辨率二维信号参量估计方法...波达方向矩阵法[J]. 通信学报,1991,12(4): 1-7, 44.Yin Q Y, Zou L H, and Newcomb R W. A high resolutionapproach to 2-D signal parameter estimationDOA matrixmethod [J]. Journal of China Institute of Communications,1991, 12(4): 1-7, 44.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3161) PDF downloads(1002) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return