Advanced Search
Volume 29 Issue 10
Jan.  2011
Turn off MathJax
Article Contents
Wang Yong-zhong, Pan Quan, Zhao Chun-hui, Cheng Yong-mei. A Robust Mean Shift Tracking Method Under Varying Illumination[J]. Journal of Electronics & Information Technology, 2007, 29(10): 2287-2291. doi: 10.3724/SP.J.1146.2006.01751
Citation: Wang Yong-zhong, Pan Quan, Zhao Chun-hui, Cheng Yong-mei. A Robust Mean Shift Tracking Method Under Varying Illumination[J]. Journal of Electronics & Information Technology, 2007, 29(10): 2287-2291. doi: 10.3724/SP.J.1146.2006.01751

A Robust Mean Shift Tracking Method Under Varying Illumination

doi: 10.3724/SP.J.1146.2006.01751
  • Received Date: 2006-11-07
  • Rev Recd Date: 2007-04-27
  • Publish Date: 2007-10-19
  • Color can provide an efficient visual cue for tracking based on appearance models. However, the apparent color of an object depends upon the illumination conditions, the viewing geometry and the camera parameters, all of which can vary during tracking and therefore make the tracking based on apparent color models unreliable or even failed. In this paper a mean shift tracking algorithm is proposed based on dynamic corrected fuzzy color histogram, which employs local background information around the target to correct the apparent models and overcomes the sensitive of conventional color histogram to illumination change and noise. The algorithm is tested on several image sequences and the results show that it can smooth the similarity surface and achieve robust and reliable frame-rate tracking under varying illumination conditions.
  • loading
  • Comaniciu D, Ramesh V, and Meer P. Kernel-based tracking[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.2003, 25(5):564-577[2]Isard M and Blake A. Condensation-conditional density propagation for visual tracking. International Journal of Computer Vision, 1998, 29(1): 2-28.[3]Yang C, Duraiswami R, and Davis L. Efficient mean-shift tracking via a new similarity measure. Proc. of IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, California, 2005, vol. I: 176-183.[4]Collins R T. Mean-shift blob tracking through scale space. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Madison, 2003, vol. I: 234-240.[5]McKenna S, Raja Y, and Gong S. Tracking colour objects using adaptive mixture models[J].International Journal of Image and Vision Computing.1999, 17:225-231[6]Collins R T and Liu Y. On-line selection of discriminative tracking features. Proc. of IEEE Conference on Computer Vision, Nice, France, 2003: 346-352.[7]Freedman D and Turek M. Illumination-invariant tracking via graph cuts. Proc. of IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, California, 2005, vol. II: 10-17.[8]Han J and Ma K. Fuzzy color histogram and its use in color image retrieval[J].IEEE Trans. on Image Processing.2002, 11(8):944-952[9]Cheng Y. Mean shift mode seeking and clustering[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.1995, 17(8):790-799
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3743) PDF downloads(2149) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return