Zhou Zuo-feng, Shui Peng-lang . Wavelet-Based Image Denoising via Doubly Local Wiener Filtering Using Directional Windows and Mathematical Morphology[J]. Journal of Electronics & Information Technology, 2008, 30(4): 885-888. doi: 10.3724/SP.J.1146.2006.01453
Citation:
Zhou Zuo-feng, Shui Peng-lang . Wavelet-Based Image Denoising via Doubly Local Wiener Filtering Using Directional Windows and Mathematical Morphology[J]. Journal of Electronics & Information Technology, 2008, 30(4): 885-888. doi: 10.3724/SP.J.1146.2006.01453
Zhou Zuo-feng, Shui Peng-lang . Wavelet-Based Image Denoising via Doubly Local Wiener Filtering Using Directional Windows and Mathematical Morphology[J]. Journal of Electronics & Information Technology, 2008, 30(4): 885-888. doi: 10.3724/SP.J.1146.2006.01453
Citation:
Zhou Zuo-feng, Shui Peng-lang . Wavelet-Based Image Denoising via Doubly Local Wiener Filtering Using Directional Windows and Mathematical Morphology[J]. Journal of Electronics & Information Technology, 2008, 30(4): 885-888. doi: 10.3724/SP.J.1146.2006.01453
Wavelet-based image denoising algorithms is a hot point in image processing applications. In this paper, a doubly local Wiener filtering algorithm using elliptic directional window and mathematical morphology is proposed, in which the mathematical morphology is first used to divide the image into texture and smooth regions, and then combine the elliptic directional window to estimate the signal variance of each wavelet coefficients in different oriented subbands, finally the doubly local Wiener filtering is used to denoise the observed image. Experiment results show that the proposed algorithm is better than the existing image denoising algorithms using 2-D real separable wavelets.
Eom I K and Kim Y S. Wavelet-based denoising with nearlyarbitrarily shaped windows[J].IEEE Signal Processing Letters.2004, 11(12):937-940[2]Kazubek M. Wavelet domain image denoising bythresholding and Wiener filtering[J].IEEE Signal ProcessingLetters.2003, 10(11):324-326[3]Fan G and Xia X G. Image denoising using local contextualhidden Marcov model in the wavelet domain[J].IEEE SignalProcessing Letters.2001, 8(5):125-128[4]Mihk M K, Kozinsev I, and Ramchandran K, et al..Low-complexity image denoising based on statisticalmodeling of wavelet coefficients. IEEE Signal ProcessingLetters, 1999, 7(6): 300-303.[5]Chang S G, Yu B, and Vetterli M. Spatially adaptive waveletthresholding with context modeling for image denoising[J].IEEE Trans. on Image Processing.2000, 9(9):1522-1531[6]Sendur L and Selesnick I W. Bivariate shrinkage with localvariance estimation[J].IEEE Signal Processing Letters.2002,9(12):438-441[7]Ghael S P, Sayeed A M, and Baraniuk R G. Improved waveletdenoising via empirical Wiener filtering. Proceedings of SPIE,San Diego, 1997: 389-399.[8]Portilla J, Strela V, and Wainwright M J, et al.. Imagedenoising using scale mixtures of Gaussians in the waveletdomain[J].IEEE Trans. on Image Processing.2003, 12(11):1338-1351[9]Shui P L. Image denoising algorithm via doubly local wienerfiltering with directional windows in wavelet domain. IEEESignal Processing Letters, 2005, 10(12): 681-684.[10]Eom I K and Kim Y S. Spatially adaptive denoising based onmixture modeling and interscale dependencies of waveletcoefficients. IEEE Int. Conf. Neural Networks SignalProcessing. Nanjing, China, 2003: 14-17.[11]Gonzalez R C and Woods E W. Digital Image Processing.MA, Addison-Wesley, Reading, 1992: 519-560.