Tang Hong-rong, Shen Min-fen, Li Bin . The Improvement of the BEMD Using Compactly Supported RBF[J]. Journal of Electronics & Information Technology, 2008, 30(1): 149-153. doi: 10.3724/SP.J.1146.2006.00849
Citation:
Tang Hong-rong, Shen Min-fen, Li Bin . The Improvement of the BEMD Using Compactly Supported RBF[J]. Journal of Electronics & Information Technology, 2008, 30(1): 149-153. doi: 10.3724/SP.J.1146.2006.00849
Tang Hong-rong, Shen Min-fen, Li Bin . The Improvement of the BEMD Using Compactly Supported RBF[J]. Journal of Electronics & Information Technology, 2008, 30(1): 149-153. doi: 10.3724/SP.J.1146.2006.00849
Citation:
Tang Hong-rong, Shen Min-fen, Li Bin . The Improvement of the BEMD Using Compactly Supported RBF[J]. Journal of Electronics & Information Technology, 2008, 30(1): 149-153. doi: 10.3724/SP.J.1146.2006.00849
In this paper, a method is proposed which uses the Radial Basis Function (RBF) to improve the Bidimensional Empirical Mode Decomposition (BEMD). The mirror compactly supported RBF not only has the precision of interpolation and suppresses the boundary effect, but also has fast computation. Experiments indicate that the method in this paper can gain better decompositions.
Huang N E, Shen Z, and Long S R, et al.. The empirical modedecomposition and the Hilbert spectrum for nonlinear andnonstationary time series analysis, Proceedings of the RoyalSociety London A, 1998: 903-1005.[2]Nunes J C.[J].Guyot S, and Del echelle E. Texture analysisbased on local analysis of the bidimensional empirical modedecomposition. Machine Vision and Applications.2005,:-[3]Liu Zhongxuan and Peng Silong. Boundary processing ofbidimensional EMD using texture synthesis. IEEE SignalProcessing Letters, 2005 12(1): 33-40.[4]Linderhed Anna. Variable sampling of the empirical modedecomposition of 2D signals. International Journal ofWavelets, Multiresolution and Information Processing. 2004:120-130.[5]邓拥军, 王伟, 钱成春, 王忠, 戴德君. EMD 方法及Hilbert变换中边界问题的处理. 科学通报, 2001: 73-77.[6]Abe Y and Iiguni Y. Fast computation of RBF coefficients forregularly sampled inputs[J].Electronics Letters.2003, 39(6):543-544[7]Light W A and Cheney E W. Interpolation by periodic radialbasis functions. J.Math. Anal. Appl. 1992, 168(3): 111-130.[8]Wu Z M. Multivariate compactly supported positive definiteradial functions [J].Advances in Computational Mathematics.1995, 4(5):283-292[9]Damerval C, Meignen S, and Perrier V. A fast algorithm forbidimensional EDM[J].IEEE Signal Processing Letters.2005,12(10):301-310[10]Flandrin P and Goncalves P. Empirical mode decompositionsas data-driven wavelet-like expansions. International Journalon Wavelets and Multires, 2004, 1(9): 50-61.