Bao Cheng-hao, Shui Peng-lang . Fast System Identification Using Direct Matrix Inversion and a Critically Sampled Subband Adaptive Filter[J]. Journal of Electronics & Information Technology, 2008, 30(1): 139-143. doi: 10.3724/SP.J.1146.2006.00831
Citation:
Bao Cheng-hao, Shui Peng-lang . Fast System Identification Using Direct Matrix Inversion and a Critically Sampled Subband Adaptive Filter[J]. Journal of Electronics & Information Technology, 2008, 30(1): 139-143. doi: 10.3724/SP.J.1146.2006.00831
Bao Cheng-hao, Shui Peng-lang . Fast System Identification Using Direct Matrix Inversion and a Critically Sampled Subband Adaptive Filter[J]. Journal of Electronics & Information Technology, 2008, 30(1): 139-143. doi: 10.3724/SP.J.1146.2006.00831
Citation:
Bao Cheng-hao, Shui Peng-lang . Fast System Identification Using Direct Matrix Inversion and a Critically Sampled Subband Adaptive Filter[J]. Journal of Electronics & Information Technology, 2008, 30(1): 139-143. doi: 10.3724/SP.J.1146.2006.00831
In many applications subband adaptive filter structures have been shown to be superior computationally and performancewise. This paper presents a subband Direct Matrix Inversion (DMI) algorithm suitable for use within a recently proposed adaptive filter structure employing critically sampled filter banks. This new method reduces the computational complexity by using the block tridiagonal structure of the input sample correlation matrix, and at the same time keeps the advantage of fast convergence. Experimental results show that the output residue power of the subband DMI algorithm is around 3dB upon the optimum value after only 2K updating of the adaptive subfilters, where K is the dimension of the adaptive subfilters.
Theodoridis S. Adaptive filtering algorithms. In Proc. IEEEIMTC, Budapest, Hungary, May 2001, vol. 3: 1497-1501.[2]Morgan D R. Slow asymptotic convergence of LMS acousticecho cancellers[J].IEEE Trans. on Speech Audio Processing.1995, 3(2):126-136[3]Petraglia M R, Alves R G, and Diniz P S R. New structuresfor adaptive filtering in subbands with critical sampling[J].IEEE Trans. on Signal Processing.2000, 48 (12):3316-3327[4]Kellermann W. Analysis and design of multirate systems forcancellation of acoustical echoes. in Proc. IEEE Int. Conf.Acoust, Speech, Signal Process, New York, Apr. 1988:2570-2573.[5]张池平,施云慧编. 计算方法. 北京:科学出版社, 2001年:46-48.[6]Monzingo R A and Miller T W. Introduction to AdaptiveArrays. New York: John Wiley and Sons , Inc. 1980, Chapter 6.[7]Baggeroer A B. Confidence intervals for regression (MEM)spectral estimates[J].IEEE Trans. on Inf. Theory.1976, 22 (5):534-545[8]Haykin S. Adaptive Filter Theory, Beijing: 4th ed. Prentice-Hall and Publishing House of Electronics Industry, 2002,Chapter 2.