Advanced Search
Volume 30 Issue 1
Jan.  2011
Turn off MathJax
Article Contents
Pang Yan-wei, Liu Zheng-kai . Automatically Outlier-Resisting Subspace Learning[J]. Journal of Electronics & Information Technology, 2008, 30(1): 176-179. doi: 10.3724/SP.J.1146.2006.00808
Citation: Pang Yan-wei, Liu Zheng-kai . Automatically Outlier-Resisting Subspace Learning[J]. Journal of Electronics & Information Technology, 2008, 30(1): 176-179. doi: 10.3724/SP.J.1146.2006.00808

Automatically Outlier-Resisting Subspace Learning

doi: 10.3724/SP.J.1146.2006.00808
  • Received Date: 2006-06-12
  • Rev Recd Date: 2007-03-14
  • Publish Date: 2008-01-19
  • Subspace learning is an effective dimensionality reduction method. However, the resulting basis vectors are significantly biased due to the presence of outlier points. Consequently, the transformed data in the subspace cannot faithfully describe the intrinsic distribution of the original data. To tackle this problem, a modified subspace learning algorithm is proposed. In the algorithm it is not necessary to detect outliers. Moreover, the algorithm is reduced to an eignenvalue problem which has a globally optimal solution. Experiments on synthetic data demonstrate the effectiveness of the proposed algorithm.
  • loading
  • [1] 刘青山, 卢汉清, 马颂德. 综述人脸识别中的子空间方法[J],自动化学报, 2003, 29(6): 900-911.Liu Qing-shan, Lu Han-qing, and Ma Sang-de. A Survey:subspace analysis for face recognition [J]. Acta AutomaticaSinica, 2003, 29(6): 900-911. [2] Turk M and Pentalnd A. Eigenfaces for recognition [J].Journal of Cognitive Neuroscience.1991, 3(1):71-86 [3] Belhumeur P, Hespanha J, and Kriengman D. Eigenfaces vs.fisherfaces: recognition using class specific linear projections[J]. IEEE Trans. on PAMI, 1997, 19(7): 771-720. [4] Bell A and Sejnowski T. An information-maximizationapproach to blind separation and blind deconvolution [J],Neural Computation, 1995, 7(6): 1129-1159. [5] 孙焕良, 鲍玉斌, 于戈, 等..一种基于划分的孤立点检测算法[J]. 软件学报, 2006, 17(5): 1009-1016.Jiang Hang-liang, Bao Yu-bin, and Yu Ge, et al.. Analgorithm based on partition for outlier detection [J]. Journalof Software, 2006, 17(5): 1009-1016. [6] Fernado T and Michael J. Robust principal componentanalysis for computer vision [C], Proc. IEEE ICCV,Vancouver, Canada, 2001: 1478-1485. [7] Xu L and Yuille A. Robust principal component analysis byself organizing rules based on statistical physics approach [J].IEEE Trans. on Neural Networks.1995, 6(1):131-143 [8] Li S, and Ju J. Face recognition using the nearest feature linemethod [J], IEEE Trans[J].on Neural Networks.1999, 10(2):439-443 [9] Phillips P and Moon H, et al.. The FERET evaluationmethodology for face recognition algorithms [J]. IEEE Trans.on PAMI, 2000, 22(10): 1090-1104
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2993) PDF downloads(1104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return