Advanced Search
Volume 30 Issue 1
Jan.  2011
Turn off MathJax
Article Contents
Song Heng, Wang Chen, Ma Shi-ping, Zuo Ji-zhang . A Decision Feedback Equalizer Based on Non-singleton Fuzzy Support Vector Machine[J]. Journal of Electronics & Information Technology, 2008, 30(1): 117-120. doi: 10.3724/SP.J.1146.2006.00803
Citation: Song Heng, Wang Chen, Ma Shi-ping, Zuo Ji-zhang . A Decision Feedback Equalizer Based on Non-singleton Fuzzy Support Vector Machine[J]. Journal of Electronics & Information Technology, 2008, 30(1): 117-120. doi: 10.3724/SP.J.1146.2006.00803

A Decision Feedback Equalizer Based on Non-singleton Fuzzy Support Vector Machine

doi: 10.3724/SP.J.1146.2006.00803
  • Received Date: 2006-06-12
  • Rev Recd Date: 2006-10-24
  • Publish Date: 2008-01-19
  • A non-singleton fuzzy support vector machine-based decision feedback equalizer (NSFSVM DFE) is proposed in this paper for severely nonlinear distorted channels with burst jamming. The method adopted non-singleton fuzzy Gauss kernel function with preceding filtering capability of which the tunable parameter is adjusted by gradient-descent algorithm. Simulation is carried out to compare it with other nonlinear channel equalizers. The result shows the method has much better performance on nonlinear equalization and anti-burst jamming.
  • loading
  • Mlesserchimitt D C. A geometric theory- of intersymbol interference. Part I:zero-forcin; and decision feedback equalization. Part II:performance of the maimum likelihood detector[J]. Bell Syst. Tech,1973, 52(9): 1433-1539[2]Cibson C .1, Siu S, and CowanC F N. The application of nonlinear structures to the reconstruction of binary- signals[J]..IEEE Trans.on SP.1991,39(8):1877-1885[3]Chen S, Cibson C .1, and Cowan C F N, ct al.. Adnptive equalization of finite non-linear channels using multilnyer[4]perceptions[J]. Signal Processing, 1990, 20(2): 107-119[5]Chen S, Mlclaughlin S, and Mulgrew B. Complex vluedradial basis function networks: application to digital communications channel equalization (Part II)[J].Signal Processing.1994, 36(2):175-133[6]Mlulgre二一B. Applying radial basis functions[J]. IEEE Signal Processing Magazinc, 1996, 13(2): 50-65[7]Yee M1 S, Yeap B L, and Hanzo L. Radial basis function-assisted turbo equalization[J]. IEEE Trans. on Co二二。,20034(51): 664-675[8]Vapnik V N. The Nature of Statistical Learning Theory[M] New York: Springer-Verlag, 1995(中文版:张学工译.统计学习理论的本质[M]北京:清华大学出版社,2000. )[9]Chen S,Gunn S,and Harris C J.Decision feedback equalizer design using support vector machines[J].Proc.Inst.Elect.Eng.Vision,Image,Signal Processing.2000,147(3):213-219[10]Albu F and Martinez D.The application of support vector machines with Gaussian kernels for overcoming cochannel interference[C].Proc.9th IEEE Int.Workshop Neural Networks Signal Processing,Madison,WI,Aug.23-25,1999:49-57.[11]Chen S,Samingan A K,and Hanzo L.Support vector machine multiuser receiver for DS-CDMA signals in multipath channels[J].IEEE Trans.on Neural Networks.2001, 12(5):604-611[12]莫玮.神经网络在自适应均衡中的应用研究[D].[博士论文],西安电子科技大学,2000.[13]边肇祺,张学工.模式识别(第二版)[M].北京:清华大学出版,社,2000:300-303.[14]王士同.模糊系统、模糊神经网络及应用程序设计[M].上海:上海科学技术文献出版社,1998:20-24.[15]何平,徐炳祥,张辉等.时变衰落信道下的自适应均衡技术[J].电子学报,1993,21(4):85-89.[16]Zadeh L A.Outline of a new approach to the analysis of complex systems and decision processes[J].IEEE Trans.on Systems,Manand Cybernetics,1973,3(1):28-44.[17]Ma Jun-shui,Theiler J,and Perkins S.Accurate on-line support vector regression[J].Neural Computation.2003,15(11):2683-2704
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3222) PDF downloads(939) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return