Advanced Search
Volume 29 Issue 12
Jan.  2011
Turn off MathJax
Article Contents
Lei Ying-jie, Wang Bao-shu, Lu Yan-li . Techniques for Threat Assessment Based on Adaptive Intuitionistic Fuzzy Reasoning[J]. Journal of Electronics & Information Technology, 2007, 29(12): 2805-2809. doi: 10.3724/SP.J.1146.2006.00708
Citation: Lei Ying-jie, Wang Bao-shu, Lu Yan-li . Techniques for Threat Assessment Based on Adaptive Intuitionistic Fuzzy Reasoning[J]. Journal of Electronics & Information Technology, 2007, 29(12): 2805-2809. doi: 10.3724/SP.J.1146.2006.00708

Techniques for Threat Assessment Based on Adaptive Intuitionistic Fuzzy Reasoning

doi: 10.3724/SP.J.1146.2006.00708
  • Received Date: 2006-05-12
  • Rev Recd Date: 2006-10-26
  • Publish Date: 2007-12-19
  • To the issues of threat assessment (TA), a technique for TA based on Adaptive Neuro-Intuitionistic Fuzzy Inference System (ANIFIS) is proposed with intuitionistic fuzzy set theory introduced into the area of information fusion. First, the properties and vulnerabilities of the existing TA methods are analyzed. A model for TA on ANIFIS with Takagi-Sugeno type is established. Then, the attribute functions, i.e. membership and nonmembership functions, and the inference rules of the system variables are devised with computational relations between layers of input and output and a synthesized computational expression of system outputs ascertained. Subsequently, an analysis of global approximation property of the model is performed with a learning algorithm of neural net devised. Finally, the validity of the technique is checked and rationality of constructed model is verified by providing TA instances with 20 typical targets. The simulated results show that this method can enhance creditability of TA and improve quality of assessment with precision of synthetic values in reasoning output.
  • loading
  • [1] Hall David L and Llinas J. An introduction to multisensor data fusion[J].Proc. IEEE.1997, 85(1):6-23 [2] Steinberg A, Bowman C, and White F. Revisions to the JDL data fusion model[J].SPIE.1999, 3719:430-441 [3] 徐毅, 金德琨, 敬忠良. 数据融合研究的回顾与展望. 信息与控制, 2002, 31(3): 250-255. [4] Looney C G and Liang L R. Cognitive situation and threat assessments of ground battlespaces[J].Information Fusion.2003, 4(4):297-308 [5] 雷英杰, 王宝树, 王毅. 基于直觉模糊推理的威胁评估方法[J].电子与信息学报.2007, 29(9):2077-2081浏览 [6] Atanassov K. Intuitionistic fuzzy sets[J].Fuzzy Sets and Systems.1986, 20(1):87-96 [7] Abbas S E. On intuitionistic fuzzy compactness[J].Information Sciences.2005, 173(1-3):75-91 [8] Li Deng-Feng. Multiattribute decision making models and methods using intuitionistic fuzzy sets[J].Journal of Computer and System Sciences.2005, 70(1):73-85 [9] Lei Y J and Wang B S. Study on the control course of ANFIS based aircraft auto-landing. Journal of Systems Engineering and Electronics, 2005, 16(3): 583-587. [10] 雷英杰,王宝树. 直觉模糊逻辑的语义算子研究. 计算机科学, 2004, 31(11): 4-6. [11] 李晓萍,王贵君. 直觉模糊集的扩张运算. 模糊系统与数学, 2002, 16(1): 40-46. [12] 雷英杰,王宝树. 直觉模糊关系及其合成运算. 系统工程理论与实践, 2005, 25(2) : 113-118. [13] Buckley J J. Sugeno type controllers are universal controllers[J].Fuzzy Sets and Systems.1993, 53(3):299-303 [14] Buckley J J. Can fuzzy neural nets approximate continuous fuzzy functions? Fuzzy Sets and Systems, 1994, 61(1): 43-51. [15] 雷英杰, 路艳丽, 李兆渊. 直觉模糊神经网络的函数逼近能力. 控制与决策, 2007, 22(5): 597-600. [16] 雷英杰, 王宝树, 路艳丽. 基于直觉模糊逻辑的近似推理方法. 控制与决策, 2006, 21(3): 305-310.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (5611) PDF downloads(2294) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return