Advanced Search
Volume 29 Issue 12
Jan.  2011
Turn off MathJax
Article Contents
QI Donglian, HAN Yifeng, ZHOU Ziqiang, YAN Yunfeng. Review of Defect Detection Technology of Power Equipment Based on Video Images[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3709-3720. doi: 10.11999/JEIT211588
Citation: Wu Yan, Liu Chong-yang, Liao Gui-sheng . A New Pixel-Level Multi-focus Image Fusion Algorithm[J]. Journal of Electronics & Information Technology, 2007, 29(12): 2800-2804. doi: 10.3724/SP.J.1146.2006.00667

A New Pixel-Level Multi-focus Image Fusion Algorithm

doi: 10.3724/SP.J.1146.2006.00667
  • Received Date: 2006-05-15
  • Rev Recd Date: 2006-09-30
  • Publish Date: 2007-12-19
  • A new fusion method for fusing two spatially registered multi-focus images is proposed in this paper. It is based on multi-resolution wavelet decomposition, Self-Organizing Feature Map (SOFM) neural networks and Evolutionary Strategies (ES). First, a normalized feature image, which represents the local region clarity difference of two source images, is extracted by redundant wavelet transform, then the feature image is clustered by SOFM learning algorithm and every pixel pair in source images is classified into a certain class which indicates different clarity differences. Finally, to each pixel pair in different classes, different fusion factors are used to fuse it; these fusion factors are determined by evolution strategies to achieve the best fusion performance. Experimental results show that the proposed method outperforms the Laplace transform and wavelet transform methods.
  • [1] Genderen J L and Van. Pohl C. Image fusion: Issues, techniques and applications, Intelligent Image Fusion. Proceedings EARSeL Workshop, Strasbourg, France, 11 Sept, 1994: 18-26. [2] Hall D L. Mathematical Techniques in Multisensor Data Fusion. Boston, Artech House, 1992: 20-59. [3] Burt P J and Adelson E H. The Laplacian pyramid as a compact image code [J].IEEE Trans. on Commun.1983, 31(4):532-540 [4] Burt P T and Lolczynski R J. Enhanced image capture through fusion. IEEE Proceedings of the 4th international Conference On Computer Vision, Berlin, Germany, 1993: 173-182. [5] Toet A. Hierarchical image fusion[J].Machine Vision and Application.1990, 3(2):1-11 [6] Li H, Manjunath B S, and Mitra S K. Multisensor image fusion using the wavelet transform[J].Graphical Models and Image Processing.1995, 57(3):235-245 [7] David A Y. Image merging and data fusion by means of the discrete two-dimensional wavelet transform[J].J.Opt. Soc. Am. A.1995, 12(9):1834-1841 [8] Zhang Z and Blum R S. A categorization of multiscale decomposition-based image fusion schemes with a performance study for a digital camera application[J].Proc. IEEE.1999, 87(8):1315-1326 [9] Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J].IEEE Trans. on Pattern Analysis and Machina Intelligence.1989, 11(7):674-693 [10] Kohonen T. Self-organized formation of topologically correct feature maps[J].Biological Cybernetics.1982, 43(1):59-69 [11] Fogel D B and Fogel L J. An introduction to simulated evolutionary optimization[J]. IEEE Trans. on NN, 1994, 5(1): 3-14. [12] Li Shutao, Kwok J T, and Wang Yaonan. Multi-focus image fusion using artificial neural networks[J].Pattern Recognition Letters.2002, 23(6):985-997
  • Cited by

    Periodical cited type(5)

    1. 何宽,郁滨. ZigBee网络按需干扰攻击检测方案. 电子测量与仪器学报. 2019(01): 128-134 .
    2. 周伟伟,郁滨. WSNs多阶段入侵检测博弈最优策略研究. 电子与信息学报. 2018(01): 63-71 . 本站查看
    3. 周伟伟,郁滨. 基于不等簇半径和动态簇头的WSN能量空洞攻击抑制模型研究. 通信学报. 2017(11): 93-102 .
    4. 郁滨,黄美根,黄一才,孔志印. ZigBee网络抵御Sybil攻击的自适应链路指纹认证方案. 电子与信息学报. 2016(10): 2627-2632 . 本站查看
    5. 陈长庆,魏波. 网络光纤通信中的噪声干扰去除方法研究. 计算机仿真. 2016(10): 166-169+182 .

    Other cited types(4)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4172) PDF downloads(1861) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return