Advanced Search
Volume 29 Issue 12
Jan.  2011
Turn off MathJax
Article Contents
Tang Zhi-feng, Wang Shi-jun, Yang Shu-yuan. A High Precision Compressed Domain Approach for Video Object Segmentation[J]. Journal of Electronics & Information Technology, 2007, 29(12): 2965-2969. doi: 10.3724/SP.J.1146.2006.00644
Citation: Tang Zhi-feng, Wang Shi-jun, Yang Shu-yuan. A High Precision Compressed Domain Approach for Video Object Segmentation[J]. Journal of Electronics & Information Technology, 2007, 29(12): 2965-2969. doi: 10.3724/SP.J.1146.2006.00644

A High Precision Compressed Domain Approach for Video Object Segmentation

doi: 10.3724/SP.J.1146.2006.00644
  • Received Date: 2006-05-15
  • Rev Recd Date: 2006-09-20
  • Publish Date: 2007-12-19
  • A fast video object segmentation method working in MPEG compressed domain is presented in this paper. Moving object masks in P frames are extracted by exploiting features obtained by partial decoding. To increase object boundary precision, for each P frame, a 1/16 sub image is constructed using DC and three AC coefficients, and motion compensation information, then a fast mean shift clustering algorithm is used to divide the image into regions with coherence luminance and obtain high precision region boundaries. For reducing the influence of motion vector noise, a MRF-based statistical labeling method is exploited to classify regions into two classes: moving object and background. The proposed algorithm can get a boundary precision of 44 sub-block with a high processing speed. For CIF video streams, the algorithm can run at a speed of 40 frames per second in a Pentium IV 2GHz platform.
  • loading
  • [1] Megret R, and DeMenthon D. A survey of spatio-temporal grouping techniques. Technical report: University of Maryland, College Park; 2002. [2] Tsaig Y, and Averbuch A. Automatic segmentation of moving objects in video sequences: a region labeling approach[J].IEEE Trans. on Circuits and Systems for Video Technology.2002, 12(7):597-612 [3] Xiao J, and Shah M. Motion layer extraction in the presence of occlusion using graph cuts[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.2005, 27(10):1644-1659 [4] Wang R, Zhang H J, and Zhang Y Q. A confidence measure based moving object extraction system built for compressed domain. IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, 2000, 5: 21-24. [5] Porikli F M. Real-time video object segmentation for MPEG-encoded video sequences. SPIE Conference on Real-Time Imaging VIII, 2004, 5297: 195-203. [6] Zeng W, Du J, and Gao W, et al.. Robust moving object segmentation on H.264/AVC compressed video using the block-based MRF model. Real-Time Imaging, 2005, 11(4): 290-299. [7] Mezaris V, Kompatsiaris I, and Boulgouris N V, et al.. Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval[J].IEEE Trans. on Circuits and Systems for Video Technology.2004, 14(5):606-621 [8] Babu R V, Ramakrishnan K R, and Srinivasan S H. Video object segmentation: a compressed domain approach[J].IEEE Trans. on Circuits and Systems for Video Technology.2004, 14(4):462-474 [9] How-Lung E, and Kai-Kuang M. Spatiotemporal segmentation of moving video objects over MPEG compressed domain. IEEE International Conference on Multimedia and Expo, New York, 2000, 3: 1531-1534. [10] Benzougar A, and Bouthemy P, Fablet R. MRF-based moving object detection from MPEG coded video. IEEE International Conference on Image Processing, Thessaloniki, Greece, 2001, 3: 402-405. [11] Babu R V, and Ramakrishnan K R. Compressed domain motion segmentation for video object extraction. IEEE International Conference on Acoustics, Speech, and Signal Processing, Florida, USA, 2002, 4: 3788-3791. [12] Sukmarg O, and Rao K R. Fast object detection and segmentation in MPEG compressed domain. IEEE Region 10 Technical Conference, Malaysia, 2000, 3: 364-368. [13] Comaniciu D and Meer P. Mean shift analysis and applications. IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999, 2: 1197-1203. [14] Christoudias C M, Georgescu B, and Meer P. Synergism in low level vision. International Conference on Pattern Recognition, Quebec City, Canada, 2002, 4: 150-155. [15] Chang H S, and Kang K. A compressed domain scheme for classifying block edge patterns[J].IEEE Trans. on Image Processing.2005, 14(2):145-151 [16] Yeo B L, and Liu B. Rapid scene analysis on compressed video[J].IEEE Trans. on Circuits and Systems for Video Technology.1995, 5(6):533-544 [17] Comaniciu D, and Meer P. Mean shift: a robust approach toward feature space analysis[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.2002, 24(5):1-18 [18] Black M J, and Anandan P. The robust estimation of multiple motions: parametric and piecewise-smooth flow fields[J].Computer Vision and Image Understanding.1996, 63(1):75-104 [19] Li S Z. Markov Random Field Modeling in Image Analysis. Tokyo: Springer-Verlag, 2001: 235-237.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3244) PDF downloads(1123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return