Advanced Search
Volume 29 Issue 4
Jan.  2011
Turn off MathJax
Article Contents
SUN Yu, YAO Peiyang, ZHANG Jieyong, FU Kai. Node Attack Strategy of Complex Networks Based on Optimization Theory[J]. Journal of Electronics & Information Technology, 2017, 39(3): 518-524. doi: 10.11999/JEIT160396
Citation: Ji Zhen-hai, Sun Ning, Zou Cai-rong, Zhao Li. Face Alignment Based on Weighted Active Shape Models[J]. Journal of Electronics & Information Technology, 2007, 29(4): 800-803. doi: 10.3724/SP.J.1146.2005.01674

Face Alignment Based on Weighted Active Shape Models

doi: 10.3724/SP.J.1146.2005.01674
  • Received Date: 2005-12-26
  • Rev Recd Date: 2006-06-26
  • Publish Date: 2007-04-19
  • Active Shape Models (ASM) is one of powerful tools for face alignment and face recognition. However, the performance of ASM is often influenced by some factors such as the initial location, illumination and so on, which will frequently lead to the local minima in optimization. This paper proposes a weighted Active Shape Models, in which the more robust local appearance model is constructed with the local information of each landmark fully. Through the improved method the local minima problem can be solved efficiently, extracted the detailed local information of face feature points and localized the points accurately. Experiments verify the above conclusions.
  • [1] Beinglass A and Wolfson H J. Articulated object recognition, or: How to generalize the generalized Hough transform[C]. In proceedings IEEE computer society conference on computer vision and pattern Recognition, Hawaii,1991: 461-466. [2] Kass M, Witkin A, and Terzopoulos D. Snakes: Active contour models[C]. 1st International Conference on Computer Vision, London, 1987: 259-268. [3] Wiskott L, Fellous J M, and Kruger N, et al.. Face recognition by Elastic Graph Matching[C]. Interlligent Biometric Techniques in Fingerprint and Face Recognition, Eds. Jain L.C. et al.,Washington DC.,pub1. CRC Press, 1999: 355-396. [4] Nastar C and Ayache N. Fast segmentation, tracking and analysis of deformable objects[C]. International Conference on Computer Vision, Berlin, 1993: 275-279. [5] Cootes T F and Taylor C J, et al.. Active shape models - their training and application[J].Computer Vision and Image Understanding.1995, 61(1):38-59 [6] Cootes T F, Edwards G J, and Taylor C J. Active appearance models[C]. European Conference On Computer Vision. Berlin, 1998, vol.2: 484-498. [7] Zhao M, Li S Z, Chen C, and Bu J J. Shape evaluation for weighted active shape models[C]. Asian Conference on Computer Vision, Korea, 2004 vol.2: 1074-1079. [8] Jiao F, and Li S Z, et al.. Face alignment using statistical models and wavelet features[C]. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Wisconsin, 2003, Vol.1: 321-327. [9] Cootes T F, and Hill A, et al.. The use of active shape models for locating structures in medical images[J]. Image Vision Comput., 1994, 12(6): 355-366. [10] Stegmann M B, Ersbll B K, and Larsen R. FAMEA flexible appearance modeling environment[J].IEEE Trans. on Medical Imaging.2003, 22(10):1319-1331 [11] Athinodoros S G and Peter N B. From few to many: Illumination cone models for face recognition under variable lighting and pose[J]. IEEE Trans. on PAMI, 2001, 23(6): 643 -660.
  • Cited by

    Periodical cited type(17)

    1. YANG Kewei,LI Jichao,LIU Maidi,LEI Tianyang,XU Xueming,WU Hongqian,CAO Jiaping,QI Gaoxin. Complex systems and network science: a survey. Journal of Systems Engineering and Electronics. 2023(03): 543-573 .
    2. 邓浩,武瑞梓,于卓然,李均利. 复杂网络能控性鲁棒性最优攻击序列研究. 小型微型计算机系统. 2023(08): 1842-1849 .
    3. 郑治华,徐冰茹,罗蓉娟,张安祥. 考虑重连机制的电力物资供应链网络鲁棒性研究. 供应链管理. 2023(10): 62-71 .
    4. 牛志强,焦雯雯. 突发事件下中蒙跨境物流网络风险评估. 综合运输. 2023(10): 139-143+181 .
    5. 郭晶,王勇. 信息系统可靠性保障能力提升研究. 电力安全技术. 2022(07): 34-38 .
    6. 楼洋,李均利,李升,邓浩. 复杂网络能控性鲁棒性研究进展. 自动化学报. 2022(10): 2374-2391 .
    7. 吴嫣媛,刘向军. 考虑级联失效影响的复杂网络关键节点识别. 计算机工程与设计. 2021(04): 920-926 .
    8. 崔慧霞,邱建龙,郭明,张润发. 有向加权供应链网络级联失效的抗毁性研究. 控制理论与应用. 2021(11): 1828-1834 .
    9. 王丹丹. 网络级联抗毁攻击信息层次化分类仿真研究. 计算机仿真. 2020(02): 329-333 .
    10. 冯小伟,胡聪,许畅,吴斌,倪平波,刘向军. 基于网络效率最优的关键节点识别方法. 计算机工程与设计. 2019(02): 328-335 .
    11. 陶汝虚,吴光凤. 移动自组织网络攻击信息支援效能评估仿真. 计算机仿真. 2019(02): 263-266+446 .
    12. 周家丞. 无线移动网络抗毁性测度指标优化修正仿真. 计算机仿真. 2019(02): 283-286+413 .
    13. 王硕锋. 复杂条件下隐写信息网络抗毁性能检测仿真. 计算机仿真. 2019(10): 434-438 .
    14. 王尔申,李宇,宏晨,孙庆华,刘畅. Linux软件网络的结构属性及静态稳健性. 电信科学. 2019(11): 9-18 .
    15. 韦小铃,阳建中. 节点失效模式下复杂网络结构抗毁性优化仿真. 计算机仿真. 2018(05): 249-253 .
    16. 吴丹,赵江. 基于复杂网络视角的网络图书广告鲁棒性分析. 浙江理工大学学报(社会科学版). 2018(02): 119-124 .
    17. 龚小刚,叶卫,方舟,王云烨. 模拟复杂网络下子网络节点抗攻击设计. 计算机测量与控制. 2017(12): 263-266 .

    Other cited types(21)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3155) PDF downloads(1312) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return