Advanced Search
Volume 29 Issue 7
Jan.  2011
Turn off MathJax
Article Contents
Zhou Dongfang, Zhou Yonghua. RECIPROCITY AND UNITARITY OF NON-LOSS LINEAR NETWORKS IN ZERO STATE[J]. Journal of Electronics & Information Technology, 1991, 13(2): 207-210.
Citation: Zu Yun-xiao. The Detection and Recognition of m-Sequence Using Higher-Order Statistical Processing[J]. Journal of Electronics & Information Technology, 2007, 29(7): 1576-1579. doi: 10.3724/SP.J.1146.2005.01671

The Detection and Recognition of m-Sequence Using Higher-Order Statistical Processing

doi: 10.3724/SP.J.1146.2005.01671
  • Received Date: 2006-12-26
  • Rev Recd Date: 2006-07-10
  • Publish Date: 2007-07-19
  • m-sequence is one of the most widely used codes in spread spectrum communications. The triple correlation function(TCF) of m-sequence, the partial triple correlation function of m-sequence and its peak feature are studied and described in this paper. Then a detection method and a recognition standard of m-sequence are proposed based on the peak feature of the partial TCF. It is testified by simulation that the peak feature of the partial TCF is same as that of the TCF during the corresponding intercepted section. With the peak feature m-sequence can be detected and recognized and this is the basis for detecting and recognizing the direct sequence spread spectrum signals. The detection method and the recognition standard of m-sequence have been proved available by the simulation.
  • 张庆,李艳斌.高阶统计技术在m-序列检测与识别中的应用[J]. 无线电工程. 2004, 34(9): 40-49. Zhang qing and Li Yan-bin. Higher-order statistical technique for blind detection and identification of m - sequence. Radio Engineering of China, 2004, 34(9): 40-49.[2]沈允春. 扩谱技术[M]. 北京: 国防工业出版社, 1995: 20-58.[3]朱近康. 扩展频谱通信及其应用[M]. 合肥: 中国科学技术大学出版社, 1993: 118-129.[4]Adams E R.[J].Gouda M, and Hill P C J. Detection characterisation of DS/SS signals using higher-order correlation[A]. Proc. IEEE ISSSTA96[C], Mainz, Germany.1996,:-[5]Batty K E and Adams E R. Detection and blind identification of m-sequence codes using higher order statistics[C]. Proceedings of IEEE on Signal Processing Workshop, Caesarea, Israel, 14-16, June 1999: 16-20.[6]Adams E R, Gouda M, and Hill P C J. Statistical techniques for blind detection discrimination of m-sequence codes in DS/SS systems[C]. Proc. IEEE 5th ISSSTA symposium98, Sun City, South Africa, 2-4 September 1998: 853-857.[7]Adams E R and Hill P C J. Detection of direct sequence spread spectrum signals using higher-order statistical processing[C]. Proc. Int. Conference on Acoustics Speech and Signal Processing, ICASSP97, Munich, Germany, 20-24 April 1997: 3849-3852.[8]段凤增. 信号检测理论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2002: 49-84.
  • Cited by

    Periodical cited type(14)

    1. 金艳,赵大地,姬红兵. 脉冲噪声下基于NAT函数的LFM信号参数估计. 系统工程与电子技术. 2022(03): 762-770 .
    2. 贾伟. 脉冲噪声下跳频信号时频图修正. 电讯技术. 2018(08): 923-928 .
    3. 于欣永,郭英,张坤峰,眭萍,李雷,李红光,孟涛. 高效的多跳频信号2D-DOA估计算法. 系统工程与电子技术. 2018(06): 1363-1370 .
    4. 金艳,高舵,姬红兵. α稳定分布噪声下基于稳健S变换的LFM信号参数估计. 系统工程与电子技术. 2017(04): 693-699 .
    5. 金艳,李曙光,姬红兵. 基于柯西分布的跳频信号参数最大似然估计方法. 电子与信息学报. 2016(07): 1696-1702 . 本站查看
    6. 龙俊波,汪海滨. 基于SaS过程的分数低阶时频自回归滑动平均模型参数估计及时频分布. 电子与信息学报. 2016(07): 1710-1716 . 本站查看
    7. 张东伟,郭英,张坤峰,齐子森,韩立峰,尚耀波. 多跳频信号频率跟踪与二维波达方向实时估计算法. 电子与信息学报. 2016(09): 2377-2384 . 本站查看
    8. 金艳,胡碧昕,姬红兵. α稳定分布噪声下一种稳健加权滤波的统一框架. 系统工程与电子技术. 2016(10): 2221-2227 .
    9. 金艳,朱敏,姬红兵. Alpha稳定分布噪声下基于柯西分布的相位键控信号码速率最大似然估计. 电子与信息学报. 2015(06): 1323-1329 . 本站查看
    10. 张东伟,郭英,齐子森,侯文林,张波,李教. 多跳频信号波达方向与极化状态联合估计算法. 电子与信息学报. 2015(07): 1695-1701 . 本站查看
    11. 任旭,朱卫纲,邢强. 跳频信号参数估计方法. 舰船电子对抗. 2015(03): 33-38 .
    12. 王陆林,刘贵如,王海,郭贤生. 基于Rayleigh分布杂波模型的动态目标检测算法. 佳木斯大学学报(自然科学版). 2015(06): 905-909 .
    13. 金艳,彭营,姬红兵. α稳定分布噪声中基于最优核时频分析的跳频信号参数估计. 系统工程与电子技术. 2015(05): 985-991 .
    14. 孔豫京,黄焱,马金全. Alpha稳定分布噪声背景下衰落信号的调制识别方法. 信号处理. 2015(08): 975-985 .

    Other cited types(23)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3220) PDF downloads(794) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return