Li Wen-jun, Xu Zhou, Lin Yu-zheng, Jin Xiao, Li Ming, Yang Xing-fan, Zhou Lin . Design and Large-Signal Beam-Wave Interaction Research of Coupled-Cavity Traveling-Wave Tube[J]. Journal of Electronics & Information Technology, 2007, 29(7): 1769-1771. doi: 10.3724/SP.J.1146.2005.01568
Citation:
Li Wen-jun, Xu Zhou, Lin Yu-zheng, Jin Xiao, Li Ming, Yang Xing-fan, Zhou Lin . Design and Large-Signal Beam-Wave Interaction Research of Coupled-Cavity Traveling-Wave Tube[J]. Journal of Electronics & Information Technology, 2007, 29(7): 1769-1771. doi: 10.3724/SP.J.1146.2005.01568
Li Wen-jun, Xu Zhou, Lin Yu-zheng, Jin Xiao, Li Ming, Yang Xing-fan, Zhou Lin . Design and Large-Signal Beam-Wave Interaction Research of Coupled-Cavity Traveling-Wave Tube[J]. Journal of Electronics & Information Technology, 2007, 29(7): 1769-1771. doi: 10.3724/SP.J.1146.2005.01568
Citation:
Li Wen-jun, Xu Zhou, Lin Yu-zheng, Jin Xiao, Li Ming, Yang Xing-fan, Zhou Lin . Design and Large-Signal Beam-Wave Interaction Research of Coupled-Cavity Traveling-Wave Tube[J]. Journal of Electronics & Information Technology, 2007, 29(7): 1769-1771. doi: 10.3724/SP.J.1146.2005.01568
An important characteristic of the beam-wave interaction in traveling-wave tube is that the velocity modulation and bunching of electron beam, also its energy exchange with the RF field, happen continuously and simultaneously along the whole slow-wave structure. This is why traveling wave tube can offer large output power in a very broad band. On the basis of cold cavity characteristic research, quantitative analysis of the large signal beam-wave interaction of coupled-cavity traveling-wave tube is performed using three-dimensional PIC simulation code. In addition, an X-band CW coupled-cavity traveling-wave tube is designed with the design parameters as follows:operating frequency from 7.1GHz to 8.5GHz,bandwidth 18%,the highest output power of 3kW.
[1] 邮电五零六厂《行波管》编写组. 行波管. 北京:人民邮电出版社,1979: 1-58. [2] 杨祥林,张兆镗,张祖舜. 微波器件原理. 北京:电子工业出版社,1994: 167-224. [3] Stockwell B, Doniger B, and Friedlander F. Advanced software coldtest of electron devices with uSOS[A]. Proceeding International Electron Devices Meeting[C]. Washington, 1989: 207-210. [4] Kantrowitz F and Tammaru I. Three-dimensional simulations of frequency-phase measurements of arbitrary coupled-cavity RF circuits[J].IEEE Trans. on Electron Devices.1988, 35(11):2018-2026 [5] Wilson J D and Kory C L. Simulation of cold-test parameters and RF output power for a coupled-cavity traveling-wave tube[J].IEEE Trans. on Electron Devices.1995, 42(11):2015-2020 [6] 赖宇睛,杨中海. 螺旋线行波管热分析的计算机模拟[A]. 第一届高能电子学学术交流会会议论文集[C]. 绵阳,1999: 169- 172. [7] 李文君,许州,林郁正,等. S波段宽带大功率连续波耦合腔行波管三维模拟设计[J]. 强激光与粒子束, 2006, 18(6): 965- 968. Li Wen-jun, Xu Zhou, and Lin Yu-zheng, et al.. Three-dimensional simulation of a broadband high-power CW S-band coupled-cavity traveling-wave tube. High Power Laser and Particle Beams, 2006, 18(6): 965-968. [8] 雷文强,杨中海,廖平. 耦合腔慢波特性及其注-波互作用的三维软件模拟[J]. 强激光与粒子束, 2003, 15(7): 673-676. Lei Wen-qiang, Yang Zhong-hai, and Liao Ping. Three dimension software simulation for slow-wave characteristic and beam-wave interaction of coupled cavity circuit. High Power Laser and Particle Beams, 2003, 15(7): 673-676.