Advanced Search
Volume 29 Issue 5
Jan.  2011
Turn off MathJax
Article Contents
Liu Ying-xia, Wang Xin. MAP Estimate of Double Haar Wavelet Coefficients and Its Application to Image Denoising[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1038-1040. doi: 10.3724/SP.J.1146.2005.01549
Citation: Liu Ying-xia, Wang Xin. MAP Estimate of Double Haar Wavelet Coefficients and Its Application to Image Denoising[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1038-1040. doi: 10.3724/SP.J.1146.2005.01549

MAP Estimate of Double Haar Wavelet Coefficients and Its Application to Image Denoising

doi: 10.3724/SP.J.1146.2005.01549
  • Received Date: 2005-11-28
  • Rev Recd Date: 2006-05-15
  • Publish Date: 2007-05-19
  • As a new tool, the wavelet transform has been used successfully in signal denoising. In this paper, the MAP estimate of double Haar wavelet transform coefficients is developed. Also, its application to image denoising is discussed. Examples show that the proposed approach is better than the soft thresholding in image denoising.
  • loading
  • Mallat S and Zhong S. Characterization of signals for multiscal edges. IEEE Trans. on PAMI, 1992, 14(7): 710-732.[2]Donoho D. De-noising by soft thresholding[J].IEEE Trans. on IT.1995, 41(3):613-627[3]Donoho D and Johnstone I M. Adapting to unknowing smoothness via wavelet shrinkage J[J].Amer. Statist. Associ.1995, 90(2):1200-1224[4]Moulin P and Liu J. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors[J].IEEE Trans. on Information Theory.1999, 45(4):909-919[5]Hansen M and Yu B. Wavelet thresholding via MDL for natural images[J].IEEE Trans. on Information Theory.2000, 46(8):1778-1788[6]Xie J, Zhang D, and Xu W. Spatially adaptive wavelet denoising using the minimum description length principle[J].IEEE Trans. on Image Processing.2004, 13(2):179-187[7]Nowak R D. Wavelet-based Rician noise removal for Magnetic resonance imaging[J].IEEE Trans. on Image Processing.1999, 8(10):1408-1419[8]Nguyen T Q and Vaidyananthan P P. Structures for M-channel perfect-reconstruction FIR QMF banks which yield linear-phase analysis filters. IEEE Trans. on Acoust., Speech, Signal Processing, 1990, ASSP-38(3): 433-446.[9]Wang X. Nonlinear multiwavelet transform based soft shresholding In Conf. IEEE APCCAS2000, Tianjing, Dec. 2000: 775-778.[10]Sendur L and Selesnik I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. on Signal Processing, 2002, 11(11): 2744-2756.[11]Mallat S. A wavelet tour of signal processing. New York: Academic Press, 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3427) PDF downloads(1112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return