Advanced Search
Volume 29 Issue 5
Jan.  2011
Turn off MathJax
Article Contents
Zhong Xiao-pin, Xue Jian-ru, Zheng Nan-ning, Ping Lin-jiang. An Adaptive Fusion Strategy Based Multiple-Cue Tracking[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1017-1022. doi: 10.3724/SP.J.1146.2005.01350
Citation: Zhong Xiao-pin, Xue Jian-ru, Zheng Nan-ning, Ping Lin-jiang. An Adaptive Fusion Strategy Based Multiple-Cue Tracking[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1017-1022. doi: 10.3724/SP.J.1146.2005.01350

An Adaptive Fusion Strategy Based Multiple-Cue Tracking

doi: 10.3724/SP.J.1146.2005.01350
  • Received Date: 2005-10-25
  • Rev Recd Date: 2006-06-30
  • Publish Date: 2007-05-19
  • Multiple cue fusion based tracking is one of the most active research in tracking literature. In this paper, a novel adaptive fusion strategy is proposed for multiple cue fusion, base on two common used fusion rules: product rule and weighted sum rule. This strategy employs particle filtering technique, estimating second order moment of the weighted sample set and computing its Frobenius norm to denote how cues are reliable, and then switch the two fusion rules in time. In practice, the new fusion strategy shows more robustness than traditional single fusion rule.
  • loading
  • Shen C H, Hengel A, and Dick A. Probabilistic multiple cue integration for particle filter based tracking. Proc. VIIth Digital Image Computing: Techniques and Applications, Melbourne, Australia, 2003, I: 399-408.[2]Li P H and Chaumette F. Image cues fusion for object tracking based on particle filter. F J Perales and B A Draper (Eds.): AMDO 2004, LNCS 3197: 99-107.[3]Leichter I, Lindenbaum M, and Rivlin E. A Probabilistic framework for combining tracking algorithms. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington, USA, 2004, (2): 445-451.[4]Spengler M and Schiele B. Towards robust multi-cue integration for visual tracking. International Journal of Machine Vision and Applications, 2003, (14): 50-58.[5]Collins R and Liu Y. On-line selection of discriminative tracking features. Proceedings of International Conference on Computer Vision, Nice, France, 2003: 346-352.[6]Toyama K and Hager G. Incremental focus of attention for robust vision-based tracking[J].International Journal of Computer Vision.1999, 35(1):45-63[7]Kittler J and Hatef M, et al.. On combining classifiers. IEEE Trans. on PAMI, 1998, 20: 226-238.[8]Triesch J and Malsburg C. Democratic integration: self-organized integration of adaptive cue[J].Neural Computation.2001, 13:2049-2074[9]Jacobs R. What determines visual cue reliability? Trends in Cognitive Sciences, 2002, 6(8): 345-350.[10]Arulampalam S, Maskell S, Gordon N, and Clapp T. A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans. on Signal Processing.2002, 50(2):174-188[11]Comaniciu D, Ramesh V, and Meer R. Real-time tracking of non-rigid objects using mean shift. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, USA, 2000, Vol.2: 142-149.[12]Perez P, Hue C, Vermaak J, and Gangnet M. Color-based probabilistic tracking. Proc. European Conf. Computer Vision, Copenhagen, Denmark, 2002, Vol(I): 661-675.[13]Huttenlocher D, Klanderman G, and Rucklidge W. Comparing images using the Hausdorff distance. IEEE Trans. on PAMI, 1993, 15(9): 850-863.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3061) PDF downloads(934) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return