Kschischang F R, Frey B J, and Loeliger H A. Factor graphs and the sum-product algorithm[J].IEEE Trans. on Inform. Theory.2001, 47(2):498-519[2]Kou Y, Lin S, and Fossorier M P C. Low-density parity-check codes based on finite geometries: a rediscovery and new results[J].IEEE Trans. on Inform. Theory.2001, 47(7):2711-2736[3]Tang H, Xu J, Lin S, and Abdel-Ghaffar K A S. Codes on finite geometries[J].IEEE Trans. on Inform. Theory.2005, 51(2):572-569[4]Lin S and Costello DJ. Error Control Coding: Fudamentals and Applications, 2nd Ed, Upper Saddle River, NJ: Prentice-Hall, 2004, Chap. 8: 273-282.[5]Di C, Proietti D, Telatar I E, Richardson T J, and Urbanke R L. Finite-length analysis of low-density parity-check codes on the binary erasure channel[J].IEEE Trans. on Inform. Theory.2002, 48(6):1570-1579[6]Kashyap N and Vardy A. Stopping sets in codes from designs. in Proc. IEEE Int. Sym. Inform. Theory, Yokohama, Japan, Jul. 2003: 122.[7]Schwartz M and Vardy A. On the stopping distance and the stopping redundancy of codes[J].IEEE Trans. on Inform. Theory.2006, 52(3):922-932[8]Koetter R and Vontobel PO. Graph covers and iterative decoding of finite-length codes. In Proc. 3rd Int. Symp. Turbo Codes and Related Topics, Brest, France, Sept. 2003: 75-82.[9]Feldman J, Wainwright M J, and Karger D R. Using linear programming to decode binary linear codes[J].IEEE Trans. on Inform. Theory.2005, 51(3):954-972[10]Chaichanavong P and Siegel PH. Relaxation bounds on the minimum pseudo-weight of linear codes. In Proc. IEEE Int. Symp. Inform. Theory, Sept. Adelaide, Australia 2005: 805-809.[11]Vontobel P O and Koetter R. Lower bounds on the minimum pseudo-weight of linear codes. In Proc. IEEE Int. Symp. Inform. Theory, Chicago, U.S.A., 2004: 70.[12]Vontobel P O, Smarandache R, and Kiyavash N, et al.. On the minimal pseudo-codewords of codes from finite geometries. In Proc. IEEE Int. Symp. Inform. Theory, Adelaide, Australia, Sept. 2005: 980-984.
|