Advanced Search
Volume 29 Issue 6
Jan.  2011
Turn off MathJax
Article Contents
Xia Shu-tao, Hu Mao-zhi. On the Stopping Sets of Finite Plane LDPC Codes[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1365-1368. doi: 10.3724/SP.J.1146.2005.01328
Citation: Xia Shu-tao, Hu Mao-zhi. On the Stopping Sets of Finite Plane LDPC Codes[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1365-1368. doi: 10.3724/SP.J.1146.2005.01328

On the Stopping Sets of Finite Plane LDPC Codes

doi: 10.3724/SP.J.1146.2005.01328
  • Received Date: 2005-10-24
  • Rev Recd Date: 2006-04-19
  • Publish Date: 2007-06-19
  • Finite plane LDPC codes are important structured LDPC codes, which have excellent performance under iterative decoding algorithm. It is a key problem that to evaluate the performance of LDPC codes under iterative decoding. Recently, the stopping sets and stopping distance of Tanner graph are of interests in performance evaluation. In this paper, the smallest sets of finite plane LDPC codes are studied. It shows that for finite plane LDPC codes, a smallest stopping set is the support of a codeword. These results give positive consequences for the good performance of finite plane LDPC codes under iterative decoding.
  • loading
  • Kschischang F R, Frey B J, and Loeliger H A. Factor graphs and the sum-product algorithm[J].IEEE Trans. on Inform. Theory.2001, 47(2):498-519[2]Kou Y, Lin S, and Fossorier M P C. Low-density parity-check codes based on finite geometries: a rediscovery and new results[J].IEEE Trans. on Inform. Theory.2001, 47(7):2711-2736[3]Tang H, Xu J, Lin S, and Abdel-Ghaffar K A S. Codes on finite geometries[J].IEEE Trans. on Inform. Theory.2005, 51(2):572-569[4]Lin S and Costello DJ. Error Control Coding: Fudamentals and Applications, 2nd Ed, Upper Saddle River, NJ: Prentice-Hall, 2004, Chap. 8: 273-282.[5]Di C, Proietti D, Telatar I E, Richardson T J, and Urbanke R L. Finite-length analysis of low-density parity-check codes on the binary erasure channel[J].IEEE Trans. on Inform. Theory.2002, 48(6):1570-1579[6]Kashyap N and Vardy A. Stopping sets in codes from designs. in Proc. IEEE Int. Sym. Inform. Theory, Yokohama, Japan, Jul. 2003: 122.[7]Schwartz M and Vardy A. On the stopping distance and the stopping redundancy of codes[J].IEEE Trans. on Inform. Theory.2006, 52(3):922-932[8]Koetter R and Vontobel PO. Graph covers and iterative decoding of finite-length codes. In Proc. 3rd Int. Symp. Turbo Codes and Related Topics, Brest, France, Sept. 2003: 75-82.[9]Feldman J, Wainwright M J, and Karger D R. Using linear programming to decode binary linear codes[J].IEEE Trans. on Inform. Theory.2005, 51(3):954-972[10]Chaichanavong P and Siegel PH. Relaxation bounds on the minimum pseudo-weight of linear codes. In Proc. IEEE Int. Symp. Inform. Theory, Sept. Adelaide, Australia 2005: 805-809.[11]Vontobel P O and Koetter R. Lower bounds on the minimum pseudo-weight of linear codes. In Proc. IEEE Int. Symp. Inform. Theory, Chicago, U.S.A., 2004: 70.[12]Vontobel P O, Smarandache R, and Kiyavash N, et al.. On the minimal pseudo-codewords of codes from finite geometries. In Proc. IEEE Int. Symp. Inform. Theory, Adelaide, Australia, Sept. 2005: 980-984.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3216) PDF downloads(1057) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return