Advanced Search
Volume 29 Issue 5
Jan.  2011
Turn off MathJax
Article Contents
DONG Chao, TAO Ting, FENG Simeng, QU Yuben, LIU Qingxin, WU Yulei, ZHANG Min. Overview on Medium Access Control Protocol in Flying Ad-hoc NETworks and Vehicular Ad-hoc NETworks[J]. Journal of Electronics & Information Technology, 2022, 44(3): 790-802. doi: 10.11999/JEIT210819
Citation: Deng Xin, Meng Luo-ming. Bayesian Networks Based Alarm Correlation and Fault Diagnosis in Communication Networks[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1182-1186. doi: 10.3724/SP.J.1146.2005.01290

Bayesian Networks Based Alarm Correlation and Fault Diagnosis in Communication Networks

doi: 10.3724/SP.J.1146.2005.01290
  • Received Date: 2005-10-11
  • Rev Recd Date: 2006-03-20
  • Publish Date: 2007-05-19
  • This paper proposes the alarm correlation and fault identification based on Bayesian networks in communication networks. At first, the basic concepts of Bayesian networks are introduced. Then the paper presents an approach for modeling large communication networks that are divided into their constituting sub-networks. And the causal relation is used to model the functional relationship among the sub-networks. The paper discusses how to construct Bayesian networks from the causal relation and presents a distributed alarm correlation framework based on CORBA. Finally, the realization and results of alarm correlation and fault identification is discussed in SDH over DWDM systems. The experimentation has proved that using Bayesian network based alarm correlation is benefit to detect and localize the root faults in communication networks.
  • Gardner R D and Harle D A. Methods and systems for alarm correlation. Global Telecommunications Conference, 1996. GLOBECOM '96. 'Communications: The Key to Global Prosperity, London, UK, 18-22 Nov., 1996, vol.1: 136-140.[2]Bouloutas A T, Calo S, and Finkel A. Alarm correlation and fault identification in communication networks[J].IEEE Trans. on Communications.1994, 42(2/3/4):523-533[3]Ekaette E U and Far B H. A framework for distributed fault management using intelligent software agents. IEEE CCECE 2003, Canadian Conference on Electrical and Computer Engineering, Canada, 4-7 May, 2003, vol.2: 797-800.[4]Steinder M and Sethi A S. End-to-end service failure diagnosis using belief networks. Network Operations and Management Symposium (NOMS), Florence, Italy, 2002: 375-390.[5]Russell S and Norving P. Artificial Intelligence: A Modern Approach (Second Edition). USA, Prentice-Hall, 2003: 540- 546.[6]Choi Jaesung, Choi Myungwhan, and Lee Sang-Hyuk. An alarm correlation and fault identification scheme based on OSI managed object classes. ICC '99. IEEE International Conference on Communications, Vancouver, BC, 6-10 June, 1999, vol.3: 1547-1551.[7]Li H, Yang S, and Baras J S. On system designs for distributed, extensible framework for network monitoring and control. Tech. Rep. CSHCN TR 2001-12, Center for Satellite and Hybrid Communication Networks, University of Maryland, 2001.
  • Cited by

    Periodical cited type(9)

    1. 尹浩,魏急波,赵海涛,张姣,王海军,任保全. 面向有人/无人协同的智能通信与组网关键技术:现状与趋势. 通信学报. 2024(01): 1-17 .
    2. 周艳红,宁进,丁志恒,多滨. 无人机群自组网MAC协议综述. 无线电工程. 2024(08): 1917-1927 .
    3. 潘弘洋,刘昭,杨波,孙庚,刘衍珩. 基于新一代通信技术的无人机系统群体智能方法综述. 吉林大学学报(工学版). 2023(03): 629-642 .
    4. 闫涛,赵一帆,高明虎,杨鲁晋,周思达. 移动自组网中的自适应MAC协议研究综述. 计算机工程与应用. 2023(11): 46-56 .
    5. 孙晨,莫国美,舒坚. 基于强化学习的无人机自组网路由研究综述. 计算机应用研究. 2023(07): 1937-1946 .
    6. 郝小梅,赵云波. 基于动态信道切换的无线网络化控制系统的资源调度策略. 高技术通讯. 2023(09): 973-980 .
    7. 张书衡,翟茹萍,刘永凯. 基于通信域和雷达域融合特征的无人机集群类型识别算法. 系统工程与电子技术. 2023(12): 3734-3742 .
    8. 党元章,华翔,张金金,石成泷,蒋天启. 自适应ANP-CRITIC的无人机集群网络优化算法. 西安工业大学学报. 2023(06): 568-577 .
    9. 张珉,董超,杨朋,冯斯梦,吴启晖,QUEK Q S T. 无人机自组网路由协议研究综述. 数据采集与处理. 2022(05): 952-970 .

    Other cited types(14)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3421) PDF downloads(1664) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return