Advanced Search
Volume 29 Issue 5
Jan.  2011
Turn off MathJax
Article Contents
Li Ping, Zhu Shi-xin. Cyclic Codes of Length 2e OverF2+uF2[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1124-1126. doi: 10.3724/SP.J.1146.2005.01254
Citation: Li Ping, Zhu Shi-xin. Cyclic Codes of Length 2e OverF2+uF2[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1124-1126. doi: 10.3724/SP.J.1146.2005.01254

Cyclic Codes of Length 2e OverF2+uF2

doi: 10.3724/SP.J.1146.2005.01254
  • Received Date: 2005-10-08
  • Rev Recd Date: 2006-03-13
  • Publish Date: 2007-05-19
  • In the last ten more years, cyclic codes over finite rings have become a hot issue for coding theorists.It is proved that R[x]/xn-1 is not a principal ideal domain, where R=2+u2 with u2=0, and n=2e. The nonzero ideals of R[x]/xn-1 are discussed in three cases and the expressions of the uniquely determined generators of the cyclic codes are given. An estimate of upper bound of Lee distance of cyclic codes over R is also given.
  • loading
  • [1] Bonnecaze A and Udaya P. Cyclic codes and self-dual codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1999, 45(5):1250-1255 [2] Udaya P and Bonnecaze A. Decoding of cyclic codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1999, 45(6):2148-2157 [3] Dougherty S T, Gaborit P, and Harada M. Type II codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1997, 50(8):1728-1744 [4] Ling S and Sole P. Duadic codes over F2+uF2 [J].Appl. Algebra in Engineering, Communication and Computing.2001, 12(2):365-379 [5] Dougherty S T and Shiromoto K. Maximum distance codes over rings of order 4[J].IEEE Trans. on Inform. Theory.2001, 47(1):400-404 [6] Dougherty S T, Gaborit P, and Harada M, et al.. Type IV self-dual codes over rings [J].IEEE Trans. on Inform. Theory.1999, 45(7):2345-2360 [7] Siap I. Linear codes over F2+uF2 and their complete weight enumerators [J]. Codes and Designs, Ohio State Univ. Math Res. Inst. Publ.10, 2000: 259-271. [8] Gulliver T A and Harada M. Construction of optimal Type IV self-dual codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1999, 45(7):2520-2521 [9] Castagnoli G and Massey J L. On repeated-root cyclic codes[J].IEEE Trans. on Inform. Theory.1991, 37(3):337-342 [10] Van Lint J H. Repeated-root cyclic codes [J].IEEE Trans. on Inform. Theory.1991, 37(3):343-345 [11] Abualrub T and Oehmke T. On the generators of Z4 cyclic codes [J].IEEE Trans. on Inform. Theory.2003, 49(9):2126-2133 [12] Blackford T. Cyclic codes over Z4 of oddly even length [C]. in Proc.Int.Workshop on Coding and Crypt., WCC 2001, Paris, France, 2001: 83-92. [13] Macwilliams F J and Sloane N J A. The Theory of Error-Correcting Codes[M]. Amsterdam: North-Holland publishing company, 1977: 190-191. [14] 吴品三. 近世代数[M], 北京: 高等教育出版社, 1979: 156-157. [15] 冯克勤, 李尚志, 查建国. 近世代数引论[M]. 合肥: 中国科技大学出版社, 1988: 106-107.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3025) PDF downloads(1105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return