[1] Bonnecaze A and Udaya P. Cyclic codes and self-dual codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1999, 45(5):1250-1255 [2] Udaya P and Bonnecaze A. Decoding of cyclic codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1999, 45(6):2148-2157 [3] Dougherty S T, Gaborit P, and Harada M. Type II codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1997, 50(8):1728-1744 [4] Ling S and Sole P. Duadic codes over F2+uF2 [J].Appl. Algebra in Engineering, Communication and Computing.2001, 12(2):365-379 [5] Dougherty S T and Shiromoto K. Maximum distance codes over rings of order 4[J].IEEE Trans. on Inform. Theory.2001, 47(1):400-404 [6] Dougherty S T, Gaborit P, and Harada M, et al.. Type IV self-dual codes over rings [J].IEEE Trans. on Inform. Theory.1999, 45(7):2345-2360 [7] Siap I. Linear codes over F2+uF2 and their complete weight enumerators [J]. Codes and Designs, Ohio State Univ. Math Res. Inst. Publ.10, 2000: 259-271. [8] Gulliver T A and Harada M. Construction of optimal Type IV self-dual codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1999, 45(7):2520-2521 [9] Castagnoli G and Massey J L. On repeated-root cyclic codes[J].IEEE Trans. on Inform. Theory.1991, 37(3):337-342 [10] Van Lint J H. Repeated-root cyclic codes [J].IEEE Trans. on Inform. Theory.1991, 37(3):343-345 [11] Abualrub T and Oehmke T. On the generators of Z4 cyclic codes [J].IEEE Trans. on Inform. Theory.2003, 49(9):2126-2133 [12] Blackford T. Cyclic codes over Z4 of oddly even length [C]. in Proc.Int.Workshop on Coding and Crypt., WCC 2001, Paris, France, 2001: 83-92. [13] Macwilliams F J and Sloane N J A. The Theory of Error-Correcting Codes[M]. Amsterdam: North-Holland publishing company, 1977: 190-191. [14] 吴品三. 近世代数[M], 北京: 高等教育出版社, 1979: 156-157. [15] 冯克勤, 李尚志, 查建国. 近世代数引论[M]. 合肥: 中国科技大学出版社, 1988: 106-107.
|