Advanced Search
Volume 29 Issue 5
Jan.  2011
Turn off MathJax
Article Contents
Han Minghua, Yuan Naichang. A IMPROVED TRACKING KALMAN FILTER USING MULTILAYER NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1998, 20(6): 739-744.
Citation: Li Ping, Zhu Shi-xin. Cyclic Codes of Length 2e OverF2+uF2[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1124-1126. doi: 10.3724/SP.J.1146.2005.01254

Cyclic Codes of Length 2e OverF2+uF2

doi: 10.3724/SP.J.1146.2005.01254
  • Received Date: 2005-10-08
  • Rev Recd Date: 2006-03-13
  • Publish Date: 2007-05-19
  • In the last ten more years, cyclic codes over finite rings have become a hot issue for coding theorists.It is proved that R[x]/xn-1 is not a principal ideal domain, where R=2+u2 with u2=0, and n=2e. The nonzero ideals of R[x]/xn-1 are discussed in three cases and the expressions of the uniquely determined generators of the cyclic codes are given. An estimate of upper bound of Lee distance of cyclic codes over R is also given.
  • [1] Bonnecaze A and Udaya P. Cyclic codes and self-dual codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1999, 45(5):1250-1255 [2] Udaya P and Bonnecaze A. Decoding of cyclic codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1999, 45(6):2148-2157 [3] Dougherty S T, Gaborit P, and Harada M. Type II codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1997, 50(8):1728-1744 [4] Ling S and Sole P. Duadic codes over F2+uF2 [J].Appl. Algebra in Engineering, Communication and Computing.2001, 12(2):365-379 [5] Dougherty S T and Shiromoto K. Maximum distance codes over rings of order 4[J].IEEE Trans. on Inform. Theory.2001, 47(1):400-404 [6] Dougherty S T, Gaborit P, and Harada M, et al.. Type IV self-dual codes over rings [J].IEEE Trans. on Inform. Theory.1999, 45(7):2345-2360 [7] Siap I. Linear codes over F2+uF2 and their complete weight enumerators [J]. Codes and Designs, Ohio State Univ. Math Res. Inst. Publ.10, 2000: 259-271. [8] Gulliver T A and Harada M. Construction of optimal Type IV self-dual codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1999, 45(7):2520-2521 [9] Castagnoli G and Massey J L. On repeated-root cyclic codes[J].IEEE Trans. on Inform. Theory.1991, 37(3):337-342 [10] Van Lint J H. Repeated-root cyclic codes [J].IEEE Trans. on Inform. Theory.1991, 37(3):343-345 [11] Abualrub T and Oehmke T. On the generators of Z4 cyclic codes [J].IEEE Trans. on Inform. Theory.2003, 49(9):2126-2133 [12] Blackford T. Cyclic codes over Z4 of oddly even length [C]. in Proc.Int.Workshop on Coding and Crypt., WCC 2001, Paris, France, 2001: 83-92. [13] Macwilliams F J and Sloane N J A. The Theory of Error-Correcting Codes[M]. Amsterdam: North-Holland publishing company, 1977: 190-191. [14] 吴品三. 近世代数[M], 北京: 高等教育出版社, 1979: 156-157. [15] 冯克勤, 李尚志, 查建国. 近世代数引论[M]. 合肥: 中国科技大学出版社, 1988: 106-107.
  • Cited by

    Periodical cited type(12)

    1. 王广龙,田杰,朱文杰,方丹. 基于特征匹配的非刚性大位移光流算法. 北京理工大学学报. 2020(04): 421-426+440 .
    2. 刘晨,张龙波,王雷,卢海涛. 基于超像素重建的多尺度B样条医学图像配准. 智能计算机与应用. 2019(01): 24-27 .
    3. 何凯,闫佳星,魏颖,王阳. 基于改进光流场模型的非刚性图像配准. 天津大学学报(自然科学与工程技术版). 2018(05): 491-496 .
    4. 张静亚,李周雁. 有限元弹性配准中的驱动外力及其网格细化. 常熟理工学院学报. 2018(05): 73-79 .
    5. 华亮,程天宇,顾菊平,俞钶安. 基于ROI及Clifford代数相对不变量的3D医学图像配准. 图学学报. 2017(01): 90-96 .
    6. 杨飒,夏明华,郑志硕. 基于多项式确定性矩阵的SIFT医学图像配准算法. 激光与光电子学进展. 2016(08): 128-134 .
    7. 于荷峰,吕晓琪,黄显武,贾东征. 基于改进Demons算法的三维肺部医学影像配准研究. 计算机应用研究. 2016(04): 1269-1272 .
    8. 张静亚,王加俊. 一种改进的非刚性医学图像配准算法. 计算机应用研究. 2015(04): 1261-1264 .
    9. 杨飒,郑志硕. 基于稀疏随机投影的SIFT医学图像配准算法. 量子电子学报. 2015(03): 283-289 .
    10. 华亮,黄宇,丁立军,冯浩,顾菊平. Clifford代数空间上的三维多模医学图像配准. 光电工程. 2014(01): 65-72 .
    11. 李京娜,邓嘉兴,王刚. 卫星图像配准及匹配曲线特征评估法. 光电工程. 2014(03): 73-81 .
    12. 华亮,丁立军,黄宇,冯浩,顾菊平. Clifford代数几何不变量3D医学图像配准的方法. 计算机科学. 2014(06): 304-308 .

    Other cited types(18)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3070) PDF downloads(1105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return