Han Minghua, Yuan Naichang. A IMPROVED TRACKING KALMAN FILTER USING MULTILAYER NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1998, 20(6): 739-744.
Citation:
Li Ping, Zhu Shi-xin. Cyclic Codes of Length 2e OverF2+uF2[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1124-1126. doi: 10.3724/SP.J.1146.2005.01254
Han Minghua, Yuan Naichang. A IMPROVED TRACKING KALMAN FILTER USING MULTILAYER NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1998, 20(6): 739-744.
Citation:
Li Ping, Zhu Shi-xin. Cyclic Codes of Length 2e OverF2+uF2[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1124-1126. doi: 10.3724/SP.J.1146.2005.01254
In the last ten more years, cyclic codes over finite rings have become a hot issue for coding theorists.It is proved that R[x]/xn-1 is not a principal ideal domain, where R=2+u2 with u2=0, and n=2e. The nonzero ideals of R[x]/xn-1 are discussed in three cases and the expressions of the uniquely determined generators of the cyclic codes are given. An estimate of upper bound of Lee distance of cyclic codes over R is also given.
[1] Bonnecaze A and Udaya P. Cyclic codes and self-dual codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1999, 45(5):1250-1255 [2] Udaya P and Bonnecaze A. Decoding of cyclic codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1999, 45(6):2148-2157 [3] Dougherty S T, Gaborit P, and Harada M. Type II codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1997, 50(8):1728-1744 [4] Ling S and Sole P. Duadic codes over F2+uF2 [J].Appl. Algebra in Engineering, Communication and Computing.2001, 12(2):365-379 [5] Dougherty S T and Shiromoto K. Maximum distance codes over rings of order 4[J].IEEE Trans. on Inform. Theory.2001, 47(1):400-404 [6] Dougherty S T, Gaborit P, and Harada M, et al.. Type IV self-dual codes over rings [J].IEEE Trans. on Inform. Theory.1999, 45(7):2345-2360 [7] Siap I. Linear codes over F2+uF2 and their complete weight enumerators [J]. Codes and Designs, Ohio State Univ. Math Res. Inst. Publ.10, 2000: 259-271. [8] Gulliver T A and Harada M. Construction of optimal Type IV self-dual codes over F2+uF2 [J].IEEE Trans. on Inform. Theory.1999, 45(7):2520-2521 [9] Castagnoli G and Massey J L. On repeated-root cyclic codes[J].IEEE Trans. on Inform. Theory.1991, 37(3):337-342 [10] Van Lint J H. Repeated-root cyclic codes [J].IEEE Trans. on Inform. Theory.1991, 37(3):343-345 [11] Abualrub T and Oehmke T. On the generators of Z4 cyclic codes [J].IEEE Trans. on Inform. Theory.2003, 49(9):2126-2133 [12] Blackford T. Cyclic codes over Z4 of oddly even length [C]. in Proc.Int.Workshop on Coding and Crypt., WCC 2001, Paris, France, 2001: 83-92. [13] Macwilliams F J and Sloane N J A. The Theory of Error-Correcting Codes[M]. Amsterdam: North-Holland publishing company, 1977: 190-191. [14] 吴品三. 近世代数[M], 北京: 高等教育出版社, 1979: 156-157. [15] 冯克勤, 李尚志, 查建国. 近世代数引论[M]. 合肥: 中国科技大学出版社, 1988: 106-107.
Han Minghua, Yuan Naichang. A IMPROVED TRACKING KALMAN FILTER USING MULTILAYER NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1998, 20(6): 739-744.
Han Minghua, Yuan Naichang. A IMPROVED TRACKING KALMAN FILTER USING MULTILAYER NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1998, 20(6): 739-744.