Advanced Search
Volume 29 Issue 5
Jan.  2011
Turn off MathJax
Article Contents
Xu Li, Zhang Hong-yan, Shen Jin-bo. Pair-wise Key Establishment Scheme Based on Transerval Design in Clustered Sensor Networks[J]. Journal of Electronics & Information Technology, 2009, 31(7): 1600-1605. doi: 10.3724/SP.J.1146.2008.00564
Citation: Kou Hua, Wang Bao-shu. The RBF-PLS Approach Based on Genetic Algorithm and Its Application in Radar Model Recognition[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1031-1034. doi: 10.3724/SP.J.1146.2005.01228

The RBF-PLS Approach Based on Genetic Algorithm and Its Application in Radar Model Recognition

doi: 10.3724/SP.J.1146.2005.01228
  • Received Date: 2005-09-26
  • Rev Recd Date: 2006-04-24
  • Publish Date: 2007-05-19
  • Radial Basis Function-Partial Least Square regression ( RBF-PLS) approach is a rapid and efficient method in constructing Radial Basis Function Network (RBFN), and it has put forward a solution to the problem about the choice of the number and the centers of the radial basis functions. But it is difficult to optimize the spread parameter of the radial basis functions and the number of PLS components extracted. A hybrid coding genetic algorithm, which uses different coding methods for different type of variables is proposed to get the optimal solution for the spread parameter and the number of PLS components. The object function of GA is the performance of fitting and predicting of the model. The approach is successfully applied to radar model recognition.
  • 吴微. 神经网络计算. 北京: 高等教育出版社, 2003: 41-48.[2]Chen S, Cowan C F N, and Grant P M. Orthogonal least squares learning algorithm for radial basis function networks[J].IEEE Trans. on Neural Networks.1991, 2(2):302-309[3]玄光男, 程润伟. 遗传算法与工程优化. 北京: 清华大学出版社, 2004: 21-108.[4]卢涛, 陈德钊. 径向基网络的研究进展和评述. 计算机工程与应用, 2005, 4(19): 60-62.[5]Walczak B and Massart D L. The radial basis function-partial least squares approach as a flexible non-linear regression technique[J].Analytical Chimica Acta.1996, 331 (3):177-185[6]Kellner R, Mermet J M, Otto M, and Widmer H M. Analytical Chemistry. New York:Wiley-VCH Verlag GmbH, 1998: 705-727.[7]Darken C and Moody J. Fast adaptive K-means clustering:some empirical results. Proceedings International Conference on Neural Networks, San Diego, 1990, volume II: 233-238.
  • Cited by

    Periodical cited type(6)

    1. 张东伟,梁晓龙,王鹏,尹晨晓. 多跳频信号参数单通道盲估计算法. 华中科技大学学报(自然科学版). 2023(06): 152-159+165 .
    2. 何邦甑,曾琦. 基于自适应天线阵列波束成形的MFSK/FH系统分析. 通信与信息技术. 2023(06): 13-17 .
    3. 杨鑫,郭英. 基于空时频协方差矩阵重构的高效跳频信号DOA估计. 信号处理. 2020(02): 250-256 .
    4. 李红光,郭英,眭萍,蔡斌,苏令华. 基于稀疏贝叶斯的多跳频信号二维波达方向估计. 上海交通大学学报. 2020(04): 359-368 .
    5. 郭英,东润泽,张坤峰,眭萍,杨银松. 基于稀疏贝叶斯学习的多跳频信号DOA估计方法. 电子与信息学报. 2019(03): 516-522 . 本站查看
    6. 于欣永,郭英,张坤峰,眭萍,李雷,李红光,孟涛. 高效的多跳频信号2D-DOA估计算法. 系统工程与电子技术. 2018(06): 1363-1370 .

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3160) PDF downloads(865) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return