Advanced Search
Volume 29 Issue 5
Jan.  2011
Turn off MathJax
Article Contents
Kou Hua, Wang Bao-shu. The RBF-PLS Approach Based on Genetic Algorithm and Its Application in Radar Model Recognition[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1031-1034. doi: 10.3724/SP.J.1146.2005.01228
Citation: Kou Hua, Wang Bao-shu. The RBF-PLS Approach Based on Genetic Algorithm and Its Application in Radar Model Recognition[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1031-1034. doi: 10.3724/SP.J.1146.2005.01228

The RBF-PLS Approach Based on Genetic Algorithm and Its Application in Radar Model Recognition

doi: 10.3724/SP.J.1146.2005.01228
  • Received Date: 2005-09-26
  • Rev Recd Date: 2006-04-24
  • Publish Date: 2007-05-19
  • Radial Basis Function-Partial Least Square regression ( RBF-PLS) approach is a rapid and efficient method in constructing Radial Basis Function Network (RBFN), and it has put forward a solution to the problem about the choice of the number and the centers of the radial basis functions. But it is difficult to optimize the spread parameter of the radial basis functions and the number of PLS components extracted. A hybrid coding genetic algorithm, which uses different coding methods for different type of variables is proposed to get the optimal solution for the spread parameter and the number of PLS components. The object function of GA is the performance of fitting and predicting of the model. The approach is successfully applied to radar model recognition.
  • loading
  • 吴微. 神经网络计算. 北京: 高等教育出版社, 2003: 41-48.[2]Chen S, Cowan C F N, and Grant P M. Orthogonal least squares learning algorithm for radial basis function networks[J].IEEE Trans. on Neural Networks.1991, 2(2):302-309[3]玄光男, 程润伟. 遗传算法与工程优化. 北京: 清华大学出版社, 2004: 21-108.[4]卢涛, 陈德钊. 径向基网络的研究进展和评述. 计算机工程与应用, 2005, 4(19): 60-62.[5]Walczak B and Massart D L. The radial basis function-partial least squares approach as a flexible non-linear regression technique[J].Analytical Chimica Acta.1996, 331 (3):177-185[6]Kellner R, Mermet J M, Otto M, and Widmer H M. Analytical Chemistry. New York:Wiley-VCH Verlag GmbH, 1998: 705-727.[7]Darken C and Moody J. Fast adaptive K-means clustering:some empirical results. Proceedings International Conference on Neural Networks, San Diego, 1990, volume II: 233-238.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3134) PDF downloads(865) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return