Advanced Search
Volume 29 Issue 6
Jan.  2011
Turn off MathJax
Article Contents
Gao Xin-bo, Tian Chun-na, Zhang Na. A Cartoon Video Detection Method Based on Active SVM Learning[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1338-1342. doi: 10.3724/SP.J.1146.2005.01193
Citation: Gao Xin-bo, Tian Chun-na, Zhang Na. A Cartoon Video Detection Method Based on Active SVM Learning[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1338-1342. doi: 10.3724/SP.J.1146.2005.01193

A Cartoon Video Detection Method Based on Active SVM Learning

doi: 10.3724/SP.J.1146.2005.01193
  • Received Date: 2005-09-19
  • Rev Recd Date: 2006-11-22
  • Publish Date: 2007-06-19
  • Through analyzing visual differences between cartoon and other videos, 8 groups of typical features including MPEG-7 descriptors are extracted to construct the feature space of cartoon videos. Then, a content-based video classifier is designed by introducing the active relevance feedback technique into Support Vector Machine (SVM) for the cartoon video detection. Experimental results on a great many real video clips illustrate that the constructed feature space can represent the cartoon videos effectively. In addition, compared with the classifier based on SVM and that based on the traditional relevance feedback technique and SVM, the proposed classifier has a higher performance for cartoon video detection.
  • loading
  • Fischer S, Lienhart R, and Effelsberg W. Automatic recognition of film genres. The 3rd ACM International Multimedia Conference and Exhibition. San Francisco, California, USA, Nov. 5-9, 1995, 1: 295-304.[2]Ianeva T I, de Vries A P, and Rohrig H. Detecting cartoons: A case study in automatic video-genre classification. Proc. IEEE International Conference on Multimedia and Expo. Baltimore, Maryland, Jul. 6-9, 2003, 1: 449-452.[3]Roach M, Mason J S, and Pawlewski M. Motion-based classification of cartoons. International Conference on Intelligent Multimedia, Video and Speech Processing, Hong Kong, May 2-4, 2001: 146-149.[4]Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Trans. on Neural Networks.1999, 10(3):626-634[5]田春娜, 高新波, 李洁. 基于嵌入式Bootstrap的主动学习示例选择方法. 计算机研究与发展, 2006, 43(10): 1706-1712. Tian C N, Gao X B, and Li J. An example selection method for active learning based on embedded Bootstrap algorithm. Journal of Computer Research and Development, 2006, 43(10): 1706-1712.[6]陈可佳, 姜远, 周志华. 基于主动相关反馈的图像检索方法. 模式识别与人工智能, 2005, 18(4): 480-485. Chen K J, Jiang Y, and Zhou Z H. An image retrieval method based on active relevance feedback. Pattern Recognition and Artificial Intelligence, 2005, 18(4): 480-485.[7]Zhang L, Lin F Z, and Zhang B. A CBIR method based on color-spatial feature. Proceedings of the IEEE Region 10 Conference on TENCON. Korea. Sept. 15-17, 1999, 1: 166-169.[8]Manjunath B S, Ohm J R, and Vasudevan V V, et al.. Color and texture descriptors[J].IEEE Trans. on Circuits and Systems for Video Technology.2001, 11(6):703-715[9]Ro Y M, Kim M, and Kang K, et al.. MPEG-7 homogeneous texture descriptor[J].ETRI Journal.2001, 23(2):41-51[10]Hasler D and Susstrunk S. Measuring colourfulness in natural images. Proc. SPIE/IST Human Vision and Electronic Imaging. Santa Clara, California, USA, Jan. 20-24, 2003: 87-95.[11]Burges C J C. A tutorial on support vector machines for pattern recognition[J].Knowledge Discovery and Data Mining.1998, 2(2):121-167[12]Gao X B and Tang X. Unsupervised video shot segmentation and model-free anchorperson detection for news video story parsing, IEEE Trans[J].on Circuits Systems for Video Technology.2002, 12(9):765-776
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2842) PDF downloads(1824) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return