Advanced Search
Volume 29 Issue 5
Jan.  2011
Turn off MathJax
Article Contents
Lü Zhi-qing, An Xiang, Hong Wei. Edge-Element Partitioning Domain Decomposition Method for Electromagnetic Problems[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1232-1235. doi: 10.3724/SP.J.1146.2005.01122
Citation: Lü Zhi-qing, An Xiang, Hong Wei. Edge-Element Partitioning Domain Decomposition Method for Electromagnetic Problems[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1232-1235. doi: 10.3724/SP.J.1146.2005.01122

Edge-Element Partitioning Domain Decomposition Method for Electromagnetic Problems

doi: 10.3724/SP.J.1146.2005.01122
  • Received Date: 2005-09-05
  • Rev Recd Date: 2006-03-13
  • Publish Date: 2007-05-19
  • A fast domain decomposition method is presented for the solution of electromagnetic problems arising in three-dimensions. The original computation domain is meshed and decomposed into several nonoverlapping subdomains by edge-element partitioning technique, which yields a capacitance matrix. Once the unknowns on the interfaces between subdomains have been obtained through the capacitance matrix, the interior unknown fields in each subdomain can be computed with vector finite element method in parallel. Compared with the conventional numerical methods, such as finite element method, method of moments, the present method can greatly reduce the computational complexity and the storage requirement. A preconditioned Krylov subspace method is also developed to accelerate the convergence of the capacitance matrix, and improve the efficiency further. The validity and computational efficiency have been verified by numerical examples.
  • loading
  • Despres B. Domain decomposition method and the Helmholtz problem[A]. Proc. Int. Symp. Mathemat. Numerical Aspects Wave Propagation Phenomena[C]. Strasbourg France: SIAM, 1992: 44-52.[2]Despres B. Domain decomposition method and the Helmholtz problem (Part II)[A]. Proc. 2nd Int. Conf. Mathemat. Numerical Aspects Wave propagation[C]. Dover, DE: SIAM, 1993: 197-206.[3]Strupfel Bruno. A fast-domain decomposition method for the solution of electromagnetic scattering by large objects[J].IEEE Trans. on Antennas and Propagat.1996, 44(10):1375-1385[4]Strupfel Bruno and Martine Mognot. A domain decomposition method for the vector wave equation[J].IEEE Trans. on Antennas and Propagat.2000, 48(5):653-660[5]吕涛, 石济民, 林振宝. 区域分裂算法偏微分方程数值解新技术[M]. 北京: 科学出版社, 1997,第5章.[6]洪伟, 孙连友, 许锋, 尹雷等. 电磁场边值问题的区域分解算法[M]. 北京: 科学出版社, 2005: 36-78.[7]Yin Lei, Wang Jie, and Hong Wei. A novel and rigorous method based on the domain decomposition method for the full-wave analysis of 3-D structures[J].IEEE Trans. on Microwave Theory and Techniques.2002, 50(8):2011-2017[8]Hong Wei.[J].Yin Xiao Xing, An Xiang, L Zhi Qing, and Cui Tie Jun. A mixed algorithm of domain decomposition method and the measured equation of invariance for the electromagnetic problems[A]. IEEE Antennas and Propagation Society International Symposium[C]. Monterey, CA: IEEE PRESS.2004,:-[9]An Xiang, L Zhi Qing, Hong wei, Cui Tie Jun, and Yin Xiao Xing. The application of PBSV-DDM in EM scattering analysis of electrically large 2-D objects[J]. Journal of Applied Sciences, 2005, 23(2): 122-125.[10]Lu Y J and Shen C Y. A domain decomposition finite difference method for parallel numerical implementation of time dependent Maxwells equations[J].IEEE Trans. on Antennas and Propagat.1997, 45(3):556-562[11]An Xiang and L Zhi Qing. Application of DDM based on special ordered nodes in 2-D electromagnetic scattering[J]. Journal of Microwaves, 2005, 21(3): 12-15.[12]安翔. 计算电磁学中的网格生成与区域分解算法[D]. 南京: 东南大学博士后研究报告, 2004,第3章.[13]尹雷. 区域分裂算法及其在电磁问题中的应用[D]. [博士学位论文],南京: 东南大学, 2001,第5章.[14]Saad Yousef. Iterative Methods for Sparse Linear Systems[M]. New York: PWS Publishing Company, 1996, chapter 9.[15]Chan T F. The interface probing technique in domain decomposition method[J].SIAM Journal on Matrix Analysis and Applications.1992, 13(1):212-238[16]金建铭. 电磁场有限元方法[M]. 西安: 西安电子科技大学出版社, 1997,第8章.[17]Harrington R F. Time Harmonic Electromagnetic Fields[M]. New York: McGraw-Hill, 1961, chapter 6.[18]葛德彪. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2002,第4章.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3054) PDF downloads(934) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return