Hou Shu-min, Li You-rong, Liu Guang-ling. A New Method of Detecting Nonlinear for Time Series Based on KS Test[J]. Journal of Electronics & Information Technology, 2007, 29(4): 808-810. doi: 10.3724/SP.J.1146.2005.00998
Citation:
Hou Shu-min, Li You-rong, Liu Guang-ling. A New Method of Detecting Nonlinear for Time Series Based on KS Test[J]. Journal of Electronics & Information Technology, 2007, 29(4): 808-810. doi: 10.3724/SP.J.1146.2005.00998
Hou Shu-min, Li You-rong, Liu Guang-ling. A New Method of Detecting Nonlinear for Time Series Based on KS Test[J]. Journal of Electronics & Information Technology, 2007, 29(4): 808-810. doi: 10.3724/SP.J.1146.2005.00998
Citation:
Hou Shu-min, Li You-rong, Liu Guang-ling. A New Method of Detecting Nonlinear for Time Series Based on KS Test[J]. Journal of Electronics & Information Technology, 2007, 29(4): 808-810. doi: 10.3724/SP.J.1146.2005.00998
The choice of test statistics can bring important influence to nonlinear of time series. This paper introduces a Non-parameter testKolmogorov-Smirnov (KS) test into nonlinearity test. After applying the Phase-randomized surrogate algorithm to create surrogate data, three test statistics methods, which include KS test, the third-order autocovariance and the asymmetry due to time reversal, are employed to determine nonlinear of five kinds signals. By comparing the test results, it indicates that KS test is an effective and stable nonlinear test statistics. The proposed method has high noise immunity and more sensitive to nonlinear signal.
[1] Kanty H and Schreiber T. Nonlinear Time Series Analysis[M]. Cambridge: Cambridge University Press, 1997: 92-104. [2] Theiler J, Eubank S, and Longtin A. Testing for nonlinearity in time series: The method of surrogate data [J].Physics D.1992, 58:77-94 [3] 孙海云, 王峰. 检验统计量的选取对替代数据方法的影响[J]. 数据采集与处理, 2003, 18(3): 253-257. Sun Hai-yun and Wang Feng. Effect on choice of test statistics for surrogate data tests. Journal of Data Acquisition Processing, 2003, 18(3): 253-257. [4] 雷敏, 孟光, 冯正进. 连续动力系统时间序列的非线性检验[J]. 物理学报, 2005, 540(3): 1056-1063. Lie Min, Meng Guang, and Feng Zheng-jin. Detecting the nonlinearity for time series sampled from continuous dynamic systems. Acta Physica Sinica, 2005, 540(3): 1056-1063. [5] 雷敏, 王志中. 非线性时间序列的替代数据检验方法研究[J].电子与信息学报.2001, 23(3):248-254浏览 [6] Schreiber T and Schmitz A. Surrogate time series[J].Phys. D.2000, 142:346-382 [7] 吴善元, 王兆军. 非参数统计方法[M]. 北京: 高等教育出版社, 1996: 144-150. [8] Gautama T, Mandic D P, and Van Hulle M M. The delay vector variance method for determinism and nonlinearity in time series[J].Phys. D.2004, 190:167-176