Advanced Search
Volume 29 Issue 1
Jan.  2011
Turn off MathJax
Article Contents
ZHAO Yan, ZHAO Lingjun, ZHANG Siqian, JI Kefeng, KUANG Gangyao. Few-Shot Class-Incremental SAR Image Target Recognition using Self-supervised Decoupled Dynamic Classifier[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3936-3948. doi: 10.11999/JEIT231470
Citation: Niu Li-pi, Mao Shi-yi, Chen Wei. Image Registration Based on Hausdorff Distance[J]. Journal of Electronics & Information Technology, 2007, 29(1): 35-38. doi: 10.3724/SP.J.1146.2005.00545

Image Registration Based on Hausdorff Distance

doi: 10.3724/SP.J.1146.2005.00545
  • Received Date: 2005-05-16
  • Rev Recd Date: 2005-10-31
  • Publish Date: 2007-01-19
  • As for the RST transform in image registration, corresponding formula of box distance transform is dieduced. Compared with traditional formula of general affine Hausdorff box distance, search range of distance is reduced. The paper proposes regional Voronoi surface combining comparison of sliding windows when computing Hausdorff distance, characterized by reducing calculating-cost for Voronoi surface. It also has the advantages of eliminating trivial edges and preserving longer edges for calculating. Experimental results show that calculation speed of image regeistation based on Huasdorff distances is improved.
  • [1] Brown L G. A survey of image registration techniques[J].ACM Computing Surveys.1992, 24(4):325- [2] Fonseca L M G. Registration techniques for multisensor remotely sensed imagery[J].Photogrammetric Engineering Remote Sensing.1996, 62(9):1049- [3] Xia Minghui and Be de. Image registration by super-curves[J].IEEE Trans. on Image Processing.2004, 13(5):720- [4] Huttenlocher D P, Klanderman G A, and Rucklidge W J. Comparing images using the Hausdorff distance[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.1993,15(9):850- [5] Rucklidge W J. Efficiently locating objects using the Hausdorff distance[J].International Journal of Computer Vision.1997, 24(3):251-
  • Cited by

    Periodical cited type(16)

    1. 贾盼盼,马雪雪,孙江峰. 基于无线衰落的SIMO中继网络物理层安全性能分析. 无线电工程. 2024(03): 543-549 .
    2. 张晓茜,徐勇军,吴翠先,黄崇文. 智能反射面增强的全双工环境反向散射通信系统波束成形算法. 电子与信息学报. 2024(03): 914-924 . 本站查看
    3. 潘钰,胡航,金虎,雷迎科,冯辉,姜丽,张孟伯. 非授权频段下无人机辅助通信的轨迹与资源分配优化. 电子与信息学报. 2024(11): 4287-4294 . 本站查看
    4. 张延良,田月华,李兴旺,黄高见. 基于MF协议的协作NOMA系统物理层安全性能研究. 电子与信息学报. 2023(04): 1211-1218 . 本站查看
    5. 李兴旺,李岩聪,高向川,于青萍,黄高见. 非理想条件下认知非正交多址接入系统中断性能研究. 电子与信息学报. 2023(07): 2415-2422 . 本站查看
    6. 仲星,李君,李正权,朱明浩,沈国丽,张茜茜. D2D通信网络中基于深度强化学习的能效优化. 计算机与数字工程. 2023(11): 2475-2482+2489 .
    7. 陈雨洁,马彩虹. 基于联盟博弈的D2D网络资源分配算法研究. 电子技术应用. 2022(02): 51-54+59 .
    8. 陈慧,张铭宇,李兴旺,孙江峰,李美玲. I/Q失衡影响下无人机多向全双工中继NOMA传输系统性能分析. 电子与信息学报. 2022(03): 987-995 . 本站查看
    9. 王茜竹,胡洪瑞,徐勇军,张海波,周继华,陈莉. 基于能量收集的UAV-D2D网络资源分配算法. 电子与信息学报. 2022(03): 976-986 . 本站查看
    10. 吴官翰,贾维敏,赵建伟,高飞飞,姚敏立. 基于多智能体强化学习的混合博弈模式下多无人机辅助通信系统设计. 电子与信息学报. 2022(03): 940-950 . 本站查看
    11. 徐勇军,徐然,周继华,万杨亮,黄崇文,刘伯红. 面向窃听用户的RIS-MISO系统鲁棒资源分配算法. 电子与信息学报. 2022(07): 2253-2263 . 本站查看
    12. 刘期烈,辛雅楠,高俊鹏,周继华,黄东,赵涛. 可重构智能表面辅助的非正交多址接入网络鲁棒能量效率资源分配算法. 电子与信息学报. 2022(07): 2332-2341 . 本站查看
    13. 徐勇军,高正念,王茜竹,周继华,黄东. 基于智能反射面辅助的无线供电通信网络鲁棒能效最大化算法. 电子与信息学报. 2022(07): 2317-2324 . 本站查看
    14. 高俊鹏,周继华,赵涛,徐勇军,赵瑞莉. 基于硬件损伤的智能反射面辅助安全通信系统能效优化算法. 电子与信息学报. 2022(07): 2349-2357 . 本站查看
    15. 徐勇军,杨蒙,周继华,陈前斌. 基于数能同传的D2D网络鲁棒资源分配算法. 中国科学:信息科学. 2022(10): 1883-1899 .
    16. 徐勇军,杨浩克,李国军,陈前斌. 多标签无线供电反向散射通信网络能效优化算法. 电子与信息学报. 2022(10): 3492-3498 . 本站查看

    Other cited types(14)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4087) PDF downloads(2636) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return