Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Quan YUAN, Wei YOU, Xinsheng JI, Hongbo TANG. Adaptive Scaling of Virtualized Network Function Resource Capacity[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1841-1848. doi: 10.11999/JET200110
Citation: Quan YUAN, Wei YOU, Xinsheng JI, Hongbo TANG. Adaptive Scaling of Virtualized Network Function Resource Capacity[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1841-1848. doi: 10.11999/JET200110

Adaptive Scaling of Virtualized Network Function Resource Capacity

doi: 10.11999/JET200110
Funds:  The National Natural Science Foundation of China (61801515), The National Natural Science Foundation Innovative Groups Project of China (61521003)
  • Received Date: 2020-02-17
  • Rev Recd Date: 2020-10-05
  • Available Online: 2020-12-14
  • Publish Date: 2021-07-10
  • In order to realize on-demand physical resource allocation in network function virtualization platform, an adaptive virtualized network function scaling method is proposed. The proposed method first use long short term memory network to realize traffic forecasting. Then combining with the forecasting result, a forward neural network-based approach is designed to predict resource demand of requested virtualized network function. Finally, according to the result of resource demand prediction, a dynamic encoding genetic algorithm is proposed to realize dynamic deployment of virtualized network function instances. The experiment results show that compared with existing scaling methods, the proposed scaling method can reduce the negative impact of inaccurate traffic forecasting, decrease the relative error of resource demand prediction as well as the total number of servers occupied by requested virtualized network function instances.
  • loading
  • [1]
    ORDONEZ-LUCENA J, AMEIGEIRAS P, LOPEZ D, et al. Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges[J]. IEEE Communications Magazine, 2017, 55(5): 80–87. doi: 10.1109/mcom.2017.1600935
    [2]
    HERRERA J G and BOTERO J F. Resource allocation in NFV: A comprehensive survey[J]. IEEE Transactions on Network and Service Management, 2016, 13(3): 518–532. doi: 10.1109/tnsm.2016.2598420
    [3]
    ADAMUZ-HINOJOSA O, ORDONEZ-LUCENA J, AMEIGEIRAS P, et al. Automated network service scaling in NFV: Concepts, mechanisms and scaling workflow[J]. IEEE Communications Magazine, 2018, 56(7): 162–169. doi: 10.1109/mcom.2018.1701336
    [4]
    RAHMAN S, AHMED T, HUYNH M, et al. Auto-scaling VNFs using machine learning to improve QoS and reduce cost[C]. Proceedings of 2018 IEEE International Conference on Communications, Kansas City, USA, 2018: 1–6.
    [5]
    TANG Hong, ZHOU D, and CHEN Duan. Dynamic network function instance scaling based on traffic forecasting and VNF placement in operator data centers[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 30(3): 530–543. doi: 10.1109/tpds.2018.2867587
    [6]
    ALAWE I, HADJADJ-AOUL Y, KSENTINI A, et al. Smart scaling of the 5G core network: An RNN-based approach[C]. Proceedings of 2018 IEEE Global Communications Conference, Abu Dhabi, The United Arab Emirates, 2018: 1–6.
    [7]
    ALAWE I, HADJADJ-AOUL Y, KSENTINIT A, et al. An efficient and lightweight load forecasting for proactive scaling in 5G mobile networks[C]. Proceedings of 2018 IEEE Conference on Standards for Communications and Networking, Paris, France, 2018: 1–6.
    [8]
    FEI Xincai, LIU Fangming, XU Hong, et al. Adaptive VNF scaling and flow routing with proactive demand prediction[C]. IEEE Conference on Computer Communications, Honolulu USA, 2018: 486–494.
    [9]
    唐伦, 周钰, 杨友超, 等. 5G网络切片场景中基于预测的虚拟网络功能动态部署算法[J]. 电子与信息学报, 2019, 41(9): 2071–2078. doi: 10.11999/JEIT180894

    TANG Lun, ZHOU Yu, YANG Youchao, et al. Virtual network function dynamic deployment algorithm based on prediction for 5G network slicing[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2071–2078. doi: 10.11999/JEIT180894
    [10]
    REN Yi, PHUNG-DUC T, LIU Yikuan, et al. ASA: Adaptive VNF scaling algorithm for 5G mobile networks[C]. Proceedings of 2018 IEEE 7th International Conference on Cloud Networking, Tokyo, Japan, 2018: 1–4.
    [11]
    WANG Xiaoke, WU Chuan, LE F, et al. Online VNF scaling in datacenters[C]. Proceedings of 2016 IEEE 9th International Conference on Cloud Computing, San Francisco, USA, 2016: 140–147.
    [12]
    WANG Xiaoke, WU Chuan, LE F, et al. Online learning-assisted VNF service chain scaling with network uncertainties[C]. Proceedings of 2017 IEEE 10th International Conference on Cloud Computing, Honolulu, USA, 2017: 205–213.
    [13]
    史久根, 张径, 徐皓, 等. 一种面向运营成本优化的虚拟网络功能部署和路由分配策略[J]. 电子与信息学报, 2019, 41(4): 973–979. doi: 10.11999/JEIT180522

    SHI Jiugen, ZHANG Jing, XU Hao, et al. Joint optimization of virtualized network function placement and routing allocation for operational expenditure[J]. Journal of Electronics &Information Technology, 2019, 41(4): 973–979. doi: 10.11999/JEIT180522
    [14]
    张红旗, 黄睿, 常德显. 一种基于匹配博弈的服务链协同映射方法[J]. 电子与信息学报, 2019, 41(2): 385–393. doi: 10.11999/JEIT180385

    ZHANG Hongqi, HUANG Rui, and CHANG Dexian. A collaborative mapping method for service chain based on matching game[J]. Journal of Electronics &Information Technology, 2019, 41(2): 385–393. doi: 10.11999/JEIT180385
    [15]
    ZHOU Songnian. A trace-driven simulation study of dynamic load balancing[J]. IEEE Transactions on Software Engineering, 1988, 14(9): 1327–1341. doi: 10.1109/32.6176
    [16]
    MEDHAT A M, TALEB T, ELMANGOUSH A, et al. Service function chaining in next generation networks: State of the art and research challenges[J]. IEEE Communications Magazine, 2017, 55(2): 216–223. doi: 10.1109/mcom.2016.1600219rp
    [17]
    PARVEZ I, RAHMATI A, GUVENC I, et al. A survey on low latency towards 5G: RAN, core network and caching solutions[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3098–3130. doi: 10.1109/comst.2018.2841349
    [18]
    GOODFELLOW I, BENGIO Y, and COURVILLE A. Deep Learning[M]. Cambridge, USA: MIT Press, 2016: 397–399.
    [19]
    HORNIK K. Approximation capabilities of multilayer feedforward networks[J]. Neural Networks, 1991, 4(2): 251–257. doi: 10.1016/0893-6080(91)90009-t
    [20]
    LOIOLA E M, DE ABREU N M M, BOAVENTURA-NETTO P O, et al. A survey for the quadratic assignment problem[J]. European Journal of Operational Research, 2007, 176(2): 657–690. doi: 10.1016/j.ejor.2005.09.032
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (761) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return