Citation: | He TIAN, Haifeng YU, Yu ZHU, Lei LIU, Running ZHANG, Li YUAN, Daojing LI, Kai ZHOU. Sparse Flight 3-D Imaging of Spaceborne SAR Based on Frequency Domain Sparse Compressed Sensing[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2021-2028. doi: 10.11999/JEJT190638 |
The space-borne Synthetic Aperture Radar (SAR) sparse flight three-dimensional (3-D) imaging technology through the multiple observations in cross-track direction obtains the 3-D spatial distribution of the observed scene. In this paper, the orbit distribution of single satellite SAR sparse flight is given. In order to shorten effectively the satellite revisit time, the formation of double star SAR orbit distribution is given. The corresponding cross-track equivalent aperture length is 20 km. A sparse 3-D imaging method based on interferometry and compressed sensing is proposed. The referential complex image is formed by using part of the echoes of the sparse flight, and the SAR 3-D image signals which are to be reconstruct are processed by interferometry. This method makes the signal sparse in the frequency domain. Under the large orbit distribution range, the frequency domain range direction and cross-track linear measurement matrix is established, which is beneficial to the Compressed Sensing(CS) theory to solve jointly the image frequency spectrum under sparse representation, and avoid the echoes coupling between the range and cross-track direction. Inversely transforming the resulting spectrum into the spatial domain, the reconstruction result can be obtained. Simulation results show that under the condition of sparse sampling rate of 74.4%, the imaging performance of the proposed method is still comparable to that of full sampling.
GIRET R, JEULAND H, and ENERT P. A study of a 3D-SAR concept for a millimeter wave imaging radar onboard an UAV[C]. The 1st European Radar Conference, Amsterdam, The Netherland, 2004: 201–204.
|
REIGBER A, MOREIRA A, and PAPATHANASSIOU K P. First demonstration of airborne SAR tomography using multibaseline L-band data[C]. IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 1999: 44–46. doi: 10.1109/IGARSS.1999.773395.
|
CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
|
CANDÈS E J. Compressive sampling[C]. The International Congress of Mathematicians, Madrid, Spain, 2006: 1–20.
|
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
|
徐华平, 周荫清, 李春升. 分布式星载干涉SAR中空间基线的分析和设计[J]. 电子与信息学报, 2003, 25(9): 1194–1199.
XU Huaping, ZHOU Yinqing, and LI Chunsheng. Baseline analysis and design for distributed spaceborne inteferometric SAR[J]. Journal of Electronics &Information Technology, 2003, 25(9): 1194–1199.
|
ZHU Xiaoxiang and BAMLER R. Very high resolution spaceborne SAR tomography in urban environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4296–4308. doi: 10.1109/TGRS.2010.2050487
|
ZHU Xiaoxiang and BAMLER R. Sparse tomographic SAR reconstruction from mixed TerraSAR-X/TanDEM-X data stacks[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 7468–7471. doi: 10.1109/IGARSS.2012.6351905.
|
ZHU Xiaoxiang and BAMLER R. Let’s do the time warp: Multicomponent nonlinear motion estimation in differential SAR tomography[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 735–739. doi: 10.1109/LGRS.2010.2103298
|
GE Nan and ZHU Xiaoxiang. Bistatic-like differential SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5883–5893. doi: 10.1109/TGRS.2019.2902814
|
张清娟, 李道京, 李烈辰. 连续场景的稀疏阵列SAR侧视三维成像研究[J]. 电子与信息学报, 2013, 35(5): 1097–1102. doi: 10.3724/SP.J.1146.2012.01136
ZHANG Qingjuan, LI Daojing, and LI Liechen. Research on continuous scene side-looking 3D imaging based on sparse array[J]. Journal of Electronics &Information Technology, 2013, 35(5): 1097–1102. doi: 10.3724/SP.J.1146.2012.01136
|
李烈辰, 李道京. 基于压缩感知的连续场景稀疏阵列SAR三维成像[J]. 电子与信息学报, 2014, 36(9): 2166–2172. doi: 10.3724/SP.J.1146.2013.01645
LI Liechen and LI Daojing. Sparse array SAR 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics &Information Technology, 2014, 36(9): 2166–2172. doi: 10.3724/SP.J.1146.2013.01645
|
TIAN He and LI Daojing. Sparse flight array SAR downward-looking 3-D imaging based on compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1395–1399. doi: 10.1109/LGRS.2016.2560238
|
田鹤, 李道京. 稀疏重航过阵列SAR运动误差补偿和三维成像方法[J]. 雷达学报, 2018, 7(6): 717–729. doi: 10.12000/JR18101
TIAN He and LI Daojing. Motion compensation and 3-D imaging algorithm in sparse flight based airborne array SAR[J]. Journal of Radars, 2018, 7(6): 717–729. doi: 10.12000/JR18101
|
尹建凤, 张庆君, 刘杰, 等. 国外编队飞行干涉SAR卫星系统发展综述[J]. 航天器工程, 2018, 27(1): 116–122. doi: 10.3969/j.issn.1673-8748.2018.01.016
YIN Jianfeng, ZHANG Qingjun, LIU Jie, et al. A review on development of formation flying interferometric SAR satellite system[J]. Spacecraft Engineering, 2018, 27(1): 116–122. doi: 10.3969/j.issn.1673-8748.2018.01.016
|
PETERSON E H, FOTOPOULOS G, and ZEE R E. A feasibility assessment for low-Cost InSAR formation-flying microsatellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2847–2858. doi: 10.1109/TGRS.2009.2017521
|
ZINK M, BARTUSCH M, and MILLER D. TanDEM-X mission status[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 2290–2293. doi: 10.1109/IGARSS.2011.6049666.
|
TRIDON D B, BACHMANN M, BÖER J, et al. TanDEM-X going for the DEM: Acquisition, performance, and further activities[C]. The 5th IEEE Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 2015: 163–168. doi: 10.1109/APSAR.2015.7306180.
|
WANG Puzhong and SHI Changsheng. Antenna Principle[M]. Beijing: Tsinghua University Press, 1993.
|